Skip to main content
Log in

A Novel Multi-Objective Optimization-Based Path Formulation for Mobile Sink in Wireless Sensor Networks

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

As a consequence of the limited battery life of sensor nodes ( \(\mathbb{S}\mathbb{N}\)s) in wireless sensor networks (\(\mathbb {WSN}\)s), the \(\mathbb{S}\mathbb{N}\)s nearby the sink exhaust rapidly and exhibit the hot spot problem. The mobile sink (\(\mathbb{M}\mathbb{S}\)) is proposed to be the solution as it helps in decreasing the energy consumption of \(\mathbb{S}\mathbb{N}\)s. This further results in an increased network lifetime. Moreover, some sensor applications require a precise data collection time and hence need to optimize the path length of the \(\mathbb{M}\mathbb{S}\). This ensures that \(\mathbb{M}\mathbb{S}\) will collect data from all the \(\mathbb{S}\mathbb{N}\)s in a certain threshold time. In the proposed approach, we use the concept of the Voronoi diagram and consider their vertices as the probable set of rendezvous points (\(\mathbb{R}\mathbb{P}\)s) for the mobile sink to collect data from \(\mathbb{S}\mathbb{N}\)s. These rendezvous points are further optimized using a cost function which is generated by using several parameters that affect the performance of each rendezvous point. The final set of rendezvous points resulting in the longest path within permissible delay is then finalized. The proposed method is simulated and compared with the existing approaches. The comparison is performed under different parameters like network lifetime, number of hop count, number of alive \(\mathbb{S}\mathbb{N}\)s, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  2. Malek, S.A.; Glaser, S.D.; Bales, R.C.: Wireless sensor networks for improved snow water equivalent and runoff estimates. IEEE Access 7, 18420–18436 (2019)

    Article  Google Scholar 

  3. Adame, T.; Bel, A.; Carreras, A.; Melia-Seguı, J.; Oliver, M.; Pous, R.: Cuidats: An RFID-WSN hybrid monitoring system for smart health care environments’’. Future Gen. Comput. Syst. 78(5), 602–615 (2018)

    Article  Google Scholar 

  4. Salarian, H.; Chin, K.-W.; Naghdy, F.: An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Trans. Vehicular Technol. 63(5), 2407–2419 (2013)

    Article  Google Scholar 

  5. Ren, F.; Zhang, J.; He, T.; Lin, C.; Das Ren, S.K.: EBRP: energybalanced routing protocol for data gathering in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(12), 2108–2125 (2011)

    Article  Google Scholar 

  6. Chen, G.; Li, C.; Ye, M.; Jie, W.: An unequal cluster-based routing protocol in wireless sensor networks. Wirel. Netw. 15(2), 193–207 (2009)

    Article  Google Scholar 

  7. Lai, W.K.; Fan, C.S.; Lin, L.Y.: Arranging cluster sizes and transmission ranges for wireless sensor networks. Inf. Sci. 183(1), 117–131 (2012)

    Article  Google Scholar 

  8. Gu, Y.; Ji, Y.; Li, J.; Ren, F.; Zhao, B.: EMŠ: efficient mobile sink scheduling in wireless sensor networks. Ad Hoc Netw. 11(5), 1556–1570 (2013)

    Article  Google Scholar 

  9. Ramesh, M.V.: Design, development, and deployment of a wireless sensor network for detection of landslides. Ad Hoc Netw. 13, 2–18 (2014)

    Article  Google Scholar 

  10. Ghafoor, S.; Rehmani, M.H.; Cho, S.; Park, S.-H.: An efficient trajectory design for mobile sink in a wireless sensor network. Comput. Electrical Eng. 40(7), 2089–2100 (2014)

    Article  Google Scholar 

  11. Mishra, M; Nitesh, K; Jana, PK.: “A delay-bound efficient path design algorithm for mobile sink in wireless sensor networks.” In 2016 3rd international conference on recent advances in information technology (RAIT), pp. 72-77. IEEE, (2016)

  12. Komal, P; Nitesh, K; Jana, PK.: “Indegree-based path design for mobile sink in wireless sensor networks.” In 2016 3rd international conference on recent advances in information technology (RAIT), pp. 78-82. IEEE, (2016)

  13. Kaswan, A.; Nitesh, K.; Jana, P.K.: Energy efficient path selection for mobile sink and data gathering in wireless sensor networks. AEU Int. J. Electron. Commun. 73, 110–118 (2017)

    Article  Google Scholar 

  14. Nitesh, K.; Azharuddin, Md.; Jana, P.K.: A novel approach for designing delay efficient path for mobile sink in wireless sensor networks. Wirel. Netw. 24(7), 2337–2356 (2018)

    Article  Google Scholar 

  15. Nitesh, K.; Kaswan, A.; Jana, P.K.: Energy density based mobile sink trajectory in wireless sensor networks. Microsyst. Technol. 25(5), 1771–1781 (2019)

    Article  Google Scholar 

  16. Mishra, M; Nitesh, K; Jana, PK.: “A delay-bound efficient path design algorithm for mobile sink in wireless sensor networks.” In 2016 3rd international conference on recent advances in information technology (RAIT), pp. 72-77. IEEE, (2016)

  17. Batalin, MA.; Sukhatme, GS.; Hattig, M: “Mobile robot navigation using a sensor network.” In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 1, pp. 636-641. IEEE, (2004)

  18. Nitesh, K; Jana, P.K.: “Energy density based dynamic path selection for mobile sink in wireless sensor networks.” In Proceedings of international conference CCSN, pp. 24-25. (2015)

  19. Khaled, A; Viglas, A; Libman, L: “Energy-efficient data gathering with tour length-constrained mobile elements in wireless sensor networks.” In IEEE local computer network conference, pp. 582-589. IEEE, (2010)

  20. Dash, D: “Geometric algorithm for finding time-sensitive data gathering path in energy harvesting sensor networks.” IEEE Transactions on Intelligent Transportation Systems (2021)

  21. Tong, L.; Zhao, Q.; Adireddy. S.: Sensor networks with mobile agents. Military Communications Conference, 2003. MILCOM’03, vol. 1. IEEE. p. 688–93. (2003)

  22. Luo, J.; Hubaux, J.-P.: Joint sink mobility and routing to maximize the lifetime of wireless sensor networks: the case of constrained mobility. IEEE/ACM Trans. Netw. (TON) 18(3), 871–84 (2010)

    Article  Google Scholar 

  23. Lyu, Z.; Zhenchun Wei, X.; Wang, Y.F.; Xia, C.; Shi, L.: A periodic multinode charging and data collection scheme with optimal traveling path in WRSNs. IEEE Syst. J. 14(3), 3518–3529 (2020)

    Article  Google Scholar 

  24. Liu, X.; Qiu, T.; Zhou, X.; Wang, T.; Yang, L.; Chang, Victor: Latencyaware path planning for disconnected sensor networks with mobile sinks. IEEE Trans. Ind. Inf. 16(1), 350–361 (2019)

    Article  Google Scholar 

  25. Tao, L.; Zhang, X.M.; Liang, W.: Efficient algorithms for mobile sink aided data collection from dedicated and virtual aggregation nodes in energy harvesting wireless sensor networks. IEEE Trans. Green Commun. Netw. 3(4), 1058–1071 (2019)

    Article  Google Scholar 

  26. Dash, D.: Geometric algorithm for finding time-sensitive data gathering path in energy harvesting sensor networks. IEEE Trans. Intell. Transp. Syst. 23(7), 7547–7556 (2021)

    Article  Google Scholar 

  27. Zhu, C.; Shuai, W.; Han, G.; Shu, L.; Hongyi, W.: A tree-cluster-based data-gathering algorithm for industrial WSNs with a mobile sink. IEEE Access 3, 381–396 (2015)

    Article  Google Scholar 

  28. Al-Janabi, T.A.; Al-Raweshidy, H.S.: A centralized routing protocol with a scheduled mobile sink-based AI for large scale I-IoT. IEEE Sens. J. 18(24), 10248–10261 (2018)

    Article  Google Scholar 

  29. Nitesh, K.; Jana, P.K.: Convex hull based trajectory design for mobile sink in wireless sensor networks. Int. J. Ad Hoc Ubiquitous Comput. 30(1), 26–36 (2019)

    Article  Google Scholar 

  30. Nitesh, K.; Azharuddin, Md.; Jana, P.: Minimum spanning tree-based delay-aware mobile sink traversal in wireless sensor networks. Int. J. Commun. Syst. 30(13), e3270 (2017)

    Article  Google Scholar 

  31. Kaswan, A., Nitesh, K., Jana, P.K.: “A routing load balanced trajectory design for mobile sink in wireless sensor networks.” In 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1669-1673. IEEE, (2016)

  32. Nitesh, K; Jana, P.K.: “Energy density based dynamic path selection for mobile sink in wireless sensor networks.” In Proceedings of international conference CCSN, pp. 24-25. (2015)

  33. Yogarajan, G.; Revathi, T.: Nature inspired discrete firefly algorithm for optimal mobile data gathering in wireless sensor networks. Wirel. Netw. 24(8), 1–15 (2017)

    Google Scholar 

  34. Tao, L.; Zhang, X.M.; Liang, W.: Efficient algorithms for mobile sink aided data collection from dedicated and virtual aggregation nodes in energy harvesting wireless sensor networks. IEEE Trans. Green Commun. Netw. 3(4), 1058–1071 (2019)

    Article  Google Scholar 

  35. Chowdary, K.M.; Kuppili, V.B.: Enhanced clustering and intelligent mobile sink path construction for an efficient data gathering in wireless sensor networks. Arab. J. Sci. Engi. 46(9), 8329–8344 (2021)

    Article  Google Scholar 

  36. Chauhan, V.; Soni, S.: Mobile sink-based energy efficient cluster head selection strategy for wireless sensor networks. J. Ambient Int. Human. Comput. 11(11), 4453–4466 (2020)

    Article  Google Scholar 

  37. Kumar, V.; Kumar, A.: Improving reporting delay and lifetime of a WSN using controlled mobile sinks. J. Ambient Intell. Human. Comput. 10(4), 1433–1441 (2019)

    Article  MathSciNet  Google Scholar 

  38. Poe, W.Y.; Beck, M.; Schmitt, J.B.: Planning the trajectories of multiple mobile sinks in large-scale, time-sensitive WSNs. In: International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS) 2011, 1–8 (2011). https://doi.org/10.1109/DCOSS.2011.5982176

  39. Kang, Z.; Zeng, H.; Hu, H.; et al.: Multi-objective optimized connectivity restoring of disjoint segments using mobile data collectors in wireless sensor network. J Wirel. Commun. Netw. 2017, 65 (2017). https://doi.org/10.1186/s13638-017-0852-0

    Article  Google Scholar 

  40. Shrirame, M.V.; Mini, S.: Path Planning for Mobile Sink in Wireless Sensor Networks. In: Ninth International Conference on Advanced Computing (ICoAC) 2017, 71–76 (2017). https://doi.org/10.1109/ICoAC.2017.8441442

  41. Xu, Y.; Ding, O.; Qu, R.; Li, K.: Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization. Appl. Soft Comput. 68, 268–282 (2018). https://doi.org/10.1016/j.asoc.2018.03.053

    Article  Google Scholar 

  42. Lu, Y.; Sun, N.; Pan, X.: Mobile sink-based path optimization strategy in wireless sensor networks using artificial bee colony algorithm. IEEE Access 7, 11668–11678 (2019). https://doi.org/10.1109/ACCESS.2018.2885534

    Article  Google Scholar 

  43. Vijayashree, R.; Dhas, C.S.G.: Energy efficient data collection with multiple mobile sink using artificial bee colony algorithm in large-scale WSN. Automatika 60, 5, 555–563 (2019). https://doi.org/10.1080/00051144.2019.1666548

    Article  Google Scholar 

  44. He, X.; Fu, X.; Yang, Y.: Energy-efficient trajectory planning algorithm based on multi-objective pso for the mobile sink in wireless sensor networks. IEEE Access 7, 176204–176217 (2019). https://doi.org/10.1109/ACCESS.2019.2957834

    Article  Google Scholar 

  45. Chao, F.; He, Z.; Pang, A.; Zhou, H.; Ge, J.: Path optimization of mobile sink node in wireless sensor network water monitoring system. Complexity 2019, 1–10 (2019)

    Article  Google Scholar 

  46. Al-Kaseem, B.R.; Taha, Z.K.; Abdulmajeed, S.W.; Al-Raweshidy, H.S.: Optimized energy - efficient path planning strategy in wsn with multiple mobile sinks. IEEE Access 9, 82833–82847 (2021). https://doi.org/10.1109/ACCESS.2021.3087086

    Article  Google Scholar 

  47. Khedr, A.M.; Al Aghbari, Z.; Raj, P.P.V.: MSSPP modified sparrow search algorithm based mobile sink path planning for WSNs. Neural Comput. Appl. (2022). https://doi.org/10.1007/s00521-022-07794-1

    Article  Google Scholar 

  48. Wang, Z.; Yinggao, Y.; Cao, L.: Mobile sink-based path optimization strategy in heterogeneous wsns for iot using pigeon-inspired optimization algorithm. Wirel. Commun. Mobile Comput. (2022). https://doi.org/10.1155/2022/2674201

    Article  Google Scholar 

  49. Xing, G.; Wang, T.; Xie, Z.; Jia, W.: Rendezvous planning in wireless sensor networks with mobile elements. IEEE Trans. Mobile Comput. 7(12), 1430–43 (2008)

    Article  Google Scholar 

  50. Shi, Y; Hou, YT: “Theoretical results on base station movement problem for sensor network.” In IEEE INFOCOM 2008-The 27th Conference on Computer Communications, pp. 1-5. IEEE, (2008)

  51. Wang, Z.M.; Melachrinoudis, E.; Basagni, S.: Voronoi diagram-based linear programming modeling of wireless sensor networks with a mobile sink. In Proceedings of IIE annual conference. Institute of Industrial Engineers-Publisher (2005)

  52. Preparata, F.P.; Shamos, M.I.; Preparata, F.P.: Computational geometry: an introduction, vol. 5. Springer, New York (1985)

    Book  MATH  Google Scholar 

  53. Heinzelman, W.; Chandrakasan, A.; Balakrishnan, H.: Application specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 1(4), 660–670 (2002)

    Article  Google Scholar 

  54. Wen, W.; Zhao, S.; Shang, C.; Chang, C.-Y.: EAPC: Energyaware path construction for data collection using mobile sink in wireless sensor networks. IEEE Sens.J. 18(2), 890–901 (2017)

    Article  Google Scholar 

  55. Nitesh, K.; Malwe, S.; Keshari, A.K.: Efficient trajectory formulation for drone sink in wireless sensor networks: an asanoha-based approach. Arab. J. Sci. Eng. 47(8), 10071–10084 (2022)

    Article  Google Scholar 

Download references

Funding

I Dr. Kumar Nitesh consciously assure that the manuscript “A Novel Multi-Objective Optimization-Based Path Formulation for Mobile Sink in WSN” is an independent work and has not been funded from anywhere. The content in the article is our own original work, which has not been published anywhere else previously and reflects the equal contribution of each author. All the existing works are referred and correctly cited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Nitesh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshari, A.K., Nitesh, K. & Karn, B. A Novel Multi-Objective Optimization-Based Path Formulation for Mobile Sink in Wireless Sensor Networks. Arab J Sci Eng 48, 10681–10696 (2023). https://doi.org/10.1007/s13369-023-07636-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07636-9

Keywords

Navigation