Skip to main content
Log in

An Analysis of Machining Response Parameters, Crystalline Structures, and Surface Topography During EDM of Die-Steel Using EDM Oil and Liquid-Based Viscous Dielectrics: A Comparative Analysis of Machining Performance

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, a highly carbonated liquid has been utilized as a dielectric medium in the EDM process. The effect of the dielectric medium has been investigated and then, finally, compared with EDM oil. The outcomes have demonstrated that discharge energy density has escalated to fierce-extent, thus, removing a voluminous amount of material from the workpiece. The results also emphasize that the dielectric medium has a viscosity (8.6 CS) higher than EDM oil (2.16 CS) is helpful for higher MRR. The debris particle has remained suspended in the dielectric medium due to its highly viscous properties leading to high MRR without any flushing technique. The process parameters, pulse-on-time, and peak current have dramatically influenced the EDM process. Further, the surface morphology has also been investigated. Results have also revealed that at a low peak current value, the MRR has increased by 155.55%, whereas, at a low value of pulse-on-time, MRR has decreased by 28.25%. At a high peak current value, MRR has increased by 217.55%, whereas, at a high value of pulse-on-time, MRR has increased by 324.05%. The highly carbonated liquid dielectric has considered the most suitable dielectric medium for high discharge energy. Micro-crack density and size have increased with MRR because of highly concentrated discharge energy. The recast layer thickness has increased with the dielectric medium's viscosity because of improper molten metal flushing, and the molten metal re-solidifies on the same surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

HSTR:

High strength and temperature resistant

Ra:

Surface roughness

FE-SEM:

Field emission scanning electron microscopy

TWR:

Tool wear rate

EDM:

Electric discharge machining

HCL:

Highly carbonated liquid

EPMA:

Electron probe microscopy element

MRR:

Material removal rate

HAZ:

Heat-affected zone

T on :

Pulse on time

Ip:

Peak current

AFM:

Atomic force microscopy

ANOVA:

Analysis of variance

WEDM:

Wire EDM

References

  1. Sanchez, J.A.; Plaza, S.; De Lacalle, L.N.L.; Lamikiz, A.: Computer simulation of wire-EDM taper-cutting. Int. J. Comput. Integr. Manuf. 19, 727–735 (2006). https://doi.org/10.1080/09511920600628855

    Article  Google Scholar 

  2. Tsai, H.C.; Yan, B.H.; Huang, F.Y.: EDM performance of Cr/Cu-based composite electrodes. Int. J. Mach. Tools Manuf. 43, 245–252 (2003). https://doi.org/10.1016/S0890-6955(02)00238-9

    Article  Google Scholar 

  3. Paswan, K.; Chattopadhyaya, S.; Pramanik, A.: Effect of composition and grain structure on machining performance in EDM-A review. IOP Conf. Ser. Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899X/377/1/012070

    Article  Google Scholar 

  4. Pramanik, A.; Basak, A.K.; Islam, M.N.: Effect of reinforced particle size on wire EDM of MMCs. Int. J. Mach. Mach. Mater. 17, 139 (2015). https://doi.org/10.1504/IJMMM.2015.070918

    Article  Google Scholar 

  5. Prakash, V.; Shubham, K.P.; Singh, P.K.; Das, A.K.; Chattopadhyaya, S., et al.: Surface alloying of miniature components by micro electrical discharge process. Mater. Manuf. Process. 33, 1051–1061 (2018). https://doi.org/10.1080/10426914.2017.1364755

    Article  Google Scholar 

  6. Niamat, M.; Sarfraz, S.; Aziz, H.; Jahanzaib, M.; Shehab, E.; Ahmad, W., et al.: Effect of different dielectrics on material removal rate, electrode wear rate and microstructures in EDM. Procedia CIRP 60, 2–7 (2017). https://doi.org/10.1016/j.procir.2017.02.023

    Article  Google Scholar 

  7. Tariq, J.S.: Experimental Investigation into the performance of water as dielectric in EDM. Int. J. Mach. Tool Des. Res. 24, 31–43 (1984)

    Article  Google Scholar 

  8. Tao, J.; Shih, A.J.; Ni, J.: Near-dry EDM milling of mirror-like surface finish. Int. J. Electr. Mach. 13, 29–33 (2008)

    Article  Google Scholar 

  9. Kung, K.Y.; Horng, J.T.; Chiang, K.T.: Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide. Int. J. Adv. Manuf. Technol. 40, 95–104 (2009). https://doi.org/10.1007/s00170-007-1307-2

    Article  Google Scholar 

  10. Syed, K.H.; Kuppan, P.: Studies on recast-layer in EDM using aluminium powder mixed distilled water dielectric fluid. Int. J. Eng. Technol. 5, 1775–1780 (2013)

    Google Scholar 

  11. Govindan, P.; Joshi, S.S.: Experimental characterization of material removal in dry electrical discharge drilling. Int. J. Mach. Tools. Manuf. 50, 431–443 (2010). https://doi.org/10.1016/j.ijmachtools.2010.02.004

    Article  Google Scholar 

  12. Kunieda, M.; Furuoya, S.; Taniguchi, N.: Improvement of EDM efficiency by supplying oxygen gas into gap. CIRP Ann. Manuf. Technol. 40, 215–218 (1991). https://doi.org/10.1016/S0007-8506(07)61971-4

    Article  Google Scholar 

  13. Dhakar, K.; Dvivedi, A.; Dhiman, A.: Experimental investigation on effects of dielectric mediums in near-dry electric discharge machining. J. Mech. Sci. Technol. 30, 2179–2185 (2016). https://doi.org/10.1007/s12206-016-0425-x

    Article  Google Scholar 

  14. Guu, Y.H.; Hocheng, H.; Chou, C.Y.; Deng, C.S.: Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel. Mater. Sci. Eng. A 358, 37–43 (2003). https://doi.org/10.1016/S0921-5093(03)00272-7

    Article  Google Scholar 

  15. Gerasimov, A.I.: Water as an insulator in pulsed facilities (review). Instrum. Exp. Tech. 48, 141–167 (2005). https://doi.org/10.1007/s10786-005-0029-7

    Article  Google Scholar 

  16. Jeswani, M.L.L.: Electrical discharge machining in distilled water. Wear 72, 81–88 (1981). https://doi.org/10.1016/0043-1648(81)90285-4

    Article  Google Scholar 

  17. König, W.; Jörres, L.: Aqueous solutions of organic compounds as dielectrics for EDM sinking. CIRP Ann. Manuf. Technol. 36, 105–109 (1987). https://doi.org/10.1016/S0007-8506(07)62564-5

    Article  Google Scholar 

  18. Ekmekci, B.: Residual stresses and white layer in electric discharge machining (EDM). Appl. Surf. Sci. 253, 9234–9240 (2007). https://doi.org/10.1016/j.apsusc.2007.05.078

    Article  Google Scholar 

  19. Ayesta, I., et al.: Experimental study on debris evacuation during slot EDMing. Procedia CIRP 42, 6–11 (2016)

    Article  Google Scholar 

  20. Kunieda, M.; Masuzawa, T.: A fundamental study on a horizontal EDM. CIRP Ann. Manuf. Technol. 37(1), 187–190 (1988)

    Article  Google Scholar 

  21. Maccarini, G.; Pellegrini, G.; Ravasio, C.: Effects of the properties of workpiece, electrode and dielectric fluid in micro-EDM drilling process. Procedia Manuf. 51, 834–841 (2020). https://doi.org/10.1016/j.promfg.2020.10.117

    Article  Google Scholar 

  22. Dolan, J.A.: Forensic Analysis of Fire Debris, 2nd edn. Elsevier, Amsterdam (2007)

    Google Scholar 

  23. NPL: National physical laboratory. Kaye Laby Tables Phys. Chem. Constants 1, 1–11 (2017)

    Google Scholar 

  24. Expansion, T: Thermal properties of metals, conductivity, thermal expansion. Specific Heat, 1–5 (2017)

  25. Sanchez, J.A.; Pombo, I.; Cabanes, I.; Ortiz, R.; de Lacalle, L.N.L.: Electrical discharge truing of metal-bonded CBN wheels using single-point electrode. Int. J. Mach. Tools. Manuf. 48, 362–370 (2008). https://doi.org/10.1016/j.ijmachtools.2007.10.002

    Article  Google Scholar 

  26. Chakraborty, S.; Dey, V.; Ghosh, S.K.: A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics. Precis. Eng. 40, 1–6 (2015). https://doi.org/10.1016/j.precisioneng.2014.11.003

    Article  Google Scholar 

  27. Mandaloi, G.; Singh, S.; Kumar, P.; Pal, K.: Effect on crystalline structure of AISI M2 steel using tungsten-thorium electrode through MRR, EWR, and surface finish. Meas. J. Int. Meas. Confed. 90, 74–84 (2016). https://doi.org/10.1016/j.measurement.2016.04.041

    Article  Google Scholar 

  28. Tzeng, Y.F.; Lee, C.Y.: Effects of powder characteristics on electrodischarge machining efficiency. Int. J. Adv. Manuf. Technol. 17, 586–592 (2001). https://doi.org/10.1007/s001700170142

    Article  Google Scholar 

  29. Dong, H.; Liu, Y.; Li, M.; Zhou, Y.; Liu, T.; Li, D., et al.: Experimental investigation of water-in-oil nanoemulsion in sinking electrical discharge machining. Mater. Manuf. Process. 34, 1129–1135 (2019). https://doi.org/10.1080/10426914.2019.1628266

    Article  Google Scholar 

  30. Plaza, S.; Ortega, N.; Sanchez, J.A.; Pombo, I.; Mendikute, A.: Original models for the prediction of angular error in wire-EDM taper-cutting. Int. J. Adv. Manuf. Technol. 44, 529–538 (2009). https://doi.org/10.1007/s00170-008-1842-5

    Article  Google Scholar 

  31. Adachi, Y.; Yoshida, M.; Kunieda, M.: Study on process reaction force caused by bubble formation in EDM. Study Process React Force Caused Bubble Form EDM 31, 23–30 (1997). https://doi.org/10.2526/jseme.31.67_23

    Article  Google Scholar 

  32. Pellegrini, G.; Ravasio, C.: Evaluation of the sustainability of the micro-electrical discharge milling process. Adv. Prod. Eng. Manag. 14(3), 343–354 (2019)

    Google Scholar 

  33. Leão, F.N.; Pashby, I.R.: A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining. J. Mater. Process. Technol. 149, 341–346 (2004)

    Article  Google Scholar 

  34. Chen, S.; Lin, M.; Huang, G.; Wang, C.: Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent. Appl Surf Sci 311, 47–53 (2014). https://doi.org/10.1016/j.apsusc.2014.04.204

    Article  Google Scholar 

  35. Kumar, A.; Mandal, A.; Dixit, A. R.; Das, A. K.: Performance evaluation of Al2O3 nano powder mixed dielectric for electric discharge machining of inconel 825. Mater. Manuf. Process. ISSN: 1042-6914 (Print) 1532–2475 (Online) Journal homepage: http://www.tandfonline.com/loi/lmmp20

  36. Theisen, W.; Schuermann, A.: Electro discharge machining of nickel-titanium shape memory alloys. Mater. Sci. Eng. A 378, 200–204 (2004). https://doi.org/10.1016/j.msea.2003.09.115

    Article  Google Scholar 

  37. Singh, B.; Kumar, J.; Kumar, S.: Experimental investigation on surface characteristics in powder-mixed electrodischarge machining of AA6061/10%SiC composite. Mater. Manuf. Process. 29, 287–297 (2014). https://doi.org/10.1080/10426914.2014.880463

    Article  Google Scholar 

  38. Lee, S.H.; Li, X.: Study of the surface integrity of the machined workpiece in the EDM of tungsten carbide. J. Mater. Process. Technol. 139, 315–321 (2003). https://doi.org/10.1016/S0924-0136(03)00547-8

    Article  Google Scholar 

  39. Singh, J.; Singh, G.; Pandey, P.M.: Electric discharge machining using rapid manufactured complex shape copper electrode with cryogenic cooling channel. Proc. Instit. Mech. Eng. Part B J. Eng. Manuf. 235(1–2), 173–185 (2021)

    Article  Google Scholar 

  40. Sanchez, J.A.; Ortega, N.; De Lacalle, L.N.L.; Lamikiz, A.; Marañon, J.A.: Analysis of the electro discharge dressing (EDD) process of large-grit size cBN grinding wheels. Int. J. Adv. Manuf. Technol. 29, 688–694 (2006). https://doi.org/10.1007/s00170-005-2579-z

    Article  Google Scholar 

  41. Hasçalik, A.; Çaydaş, U.: Electrical discharge machining of titanium alloy (Ti-6Al-4V). Appl. Surf. Sci. 253, 9007–9016 (2007). https://doi.org/10.1016/j.apsusc.2007.05.031

    Article  Google Scholar 

  42. Reddy, V.V.; Kumar, A.; Valli, P.M.; Reddy, C.S.: Influence of surfactant and graphite powder concentration on electrical discharge machining of PH17-4 stainless steel. J. Braz. Soc. Mech. Sci. Eng. 37, 641–655 (2015). https://doi.org/10.1007/s40430-014-0193-4

    Article  Google Scholar 

  43. Li, C.P.; Kim, M.Y.; Islam, M.M.; Ko, T.J.: Mechanism analysis of hybrid machining process comprising EDM and end milling. J. Mater. Process. Technol. 237, 309–319 (2016). https://doi.org/10.1016/j.jmatprotec.2016.06.022

    Article  Google Scholar 

  44. Ekmekci, B.; Elkoca, O.; Tekkaya, A.E.; Erden, A.: Residual stress state and hardness depth in electric discharge machining: de-ionized water as dielectric liquid. Mach. Sci. Technol. 9, 39–61 (2005). https://doi.org/10.1081/MST-200051244

    Article  Google Scholar 

  45. Vinoth Kumar, S.; Pradeep, K.M.: Machining process parameter and surface integrity in conventional EDM and cryogenic EDM of Al–SiCp MMC. J. Manuf. Process. 20, 70–78 (2015). https://doi.org/10.1016/j.jmapro.2015.07.007

    Article  Google Scholar 

  46. Ming, W.; Xie, Z.; Cao, C.; Liu, M.; Zhang, F.; Yang, Y.; Zhang, S.; Sun, P.; Guo, X.: Research on EDM performance of renewable dielectrics under different electrodes for machining SKD11. Crystals 12, 291 (2022). https://doi.org/10.3390/cryst12020291

    Article  Google Scholar 

  47. Lin, Y.C.; Chen, Y.F.; Lin, C.T.; Tzeng, H.J.: Electrical discharge machining (EDM) characteristics associated with electrical discharge energy on machining of cemented tungsten carbide. Mater. Manuf. Process. 23, 391–399 (2008). https://doi.org/10.1080/10426910801938577

    Article  Google Scholar 

  48. Prabhu, S.; Vinayagam, B.K.: Analysis of surface characteristics of AISI D2 tool steel material using electric discharge machining process with single wall carbon nano tubes. Int. J. Eng. Technol. 2, 35–41 (2014). https://doi.org/10.7763/ijet.2010.v2.96

    Article  Google Scholar 

  49. Singh, J.; Singh, G.; Pandey, P.M.: Electric discharge machining using rapid manufactured complex shape copper electrode: parametric analysis and process optimization for material removal rate, electrode wear rate and cavity dimensions. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 234(12), 2459–2473 (2020)

    Article  Google Scholar 

  50. Yadav, R.N.: Electro-chemical spark machining-based hybrid machining processes: research trends and opportunities. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2018). https://doi.org/10.1177/0954405418755825

    Article  Google Scholar 

  51. Dhakara, K.; Dvivedia, A.: Parametric evaluation on near-dry electric discharge, machining. Mater. Manuf. Process. Mater. Manuf. Process. 26 July 2015, At: 23:49.

  52. Singh, S.; Bhardwaj, A.: Review to EDM by using water and powder-mixed dielectric fluid. J. Miner. Mater. Charact. Eng. 10(2), 199–230 (2011)

    Google Scholar 

  53. Nguyen, M.D.; Rahman, M.; Wong, Y.S.: An experimental study on micro-EDM in low-resistivity deionized water using short voltage pulses. Int. J. Adv. Manuf. Technol. 58, 533–544 (2012). https://doi.org/10.1007/s00170-011-3397-0

    Article  Google Scholar 

  54. Sharma, A.; Kumar, V.; Babbar, A.; Dhawan, V.; Kotecha, K.; Prakash, C.: Experimental investigation and optimization of electric discharge machining process parameters using grey-fuzzy-based hybrid techniques. Materials 14, 5820 (2021). https://doi.org/10.3390/ma14195820

    Article  Google Scholar 

  55. Kumar, S.: Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric. J. Manuf. Process. 14, 35–40 (2012). https://doi.org/10.1016/j.jmapro.2011.09.002

    Article  Google Scholar 

  56. Chaudhari, R.; Vora, J.J.; Mani Prabu, S.S.; Palani, I.A.; Patel, V.K.; Parikh, D.M.; de Lacalle, L.N.L.: Multi-response optimization of WEDM process parameters for machining of superelastic nitinol shape-memory alloy using a heat-transfer search algorithm. Mater. 12(8), 1277 (2019).

    Article  Google Scholar 

  57. Gadalla, A.M.; Bozkurt, B.: Expanding heat source model for thermal spalling of TiB2 in electrical discharge machining. J. Mater. Res. 7, 2853–2858 (1992). https://doi.org/10.1557/JMR.1992.2853

    Article  Google Scholar 

  58. Ishfaq, K.; Maqsood, M.; Mahmood, M.: Machining characteristics of various powder-based additives, dielectrics, and electrodes during EDM of micro-impressions: a comparative study. Int. J. Adv. Manuf. Technol. 123, 1521–1541 (2022). https://doi.org/10.1007/s00170-022-10254-8

    Article  Google Scholar 

  59. Wang, C.; Qiang, Z.: Comparison of micro-EDM characteristics of inconel 706 between EDM oil and an Al powder-mixed dielectric. Adv. Mater. Sci. Eng. (2019). https://doi.org/10.1155/2019/5625360

    Article  Google Scholar 

  60. Chandrashekarappa, M.P.G.; Kumar, S.; Jagadish, J.; Pimenov, D.Y.; Giasin, K.: Experimental analysis and optimization of EDM parameters on HcHcr steel in context with different electrodes and dielectric fluids using hybrid taguchi-based PCA-utility and CRITIC-utility approaches. Metals 11, 419 (2021). https://doi.org/10.3390/met11030419

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

KP: conceptualisation, methodology, investigation, software, writing—original draft preparation. AP: conceptualisation, methodology, investigation, software, writing—original draft preparation. SC: conceptualisation, supervision, validation, writing—reviewing and editing. SS: conceptualisation, supervision, validation, writing—reviewing and editing. GS: supervision, visualization, writing—reviewing and editing. AMK: supervision, visualization, writing—reviewing and editing. SS: supervision, visualization, writing—reviewing and editing.

Corresponding authors

Correspondence to Kamlesh Paswan or Shubham Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paswan, K., Pramanik, A., Chattopadhyaya, S. et al. An Analysis of Machining Response Parameters, Crystalline Structures, and Surface Topography During EDM of Die-Steel Using EDM Oil and Liquid-Based Viscous Dielectrics: A Comparative Analysis of Machining Performance. Arab J Sci Eng 48, 11941–11957 (2023). https://doi.org/10.1007/s13369-023-07626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07626-x

Keywords

Navigation