Skip to main content

Advertisement

Log in

Assessment of Advanced Technologies to Capture Gas Flaring in North Dakota

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Flaring of associated gas from oil wells and the excess gas from gas-processing units and oil refineries is one of the most prominent producers of greenhouse gas emissions. Flaring, by definition, is a method used to burn unwanted flammable gas, which produces significant amounts of methane, carbon dioxide, nitrogen oxide, and sulfur oxide. The petroleum industry adds millions of tons of CO2 annually into the atmosphere by flaring gas, which presents a serious risk due to the environmental and economic impacts associated with it. In light of the increasing awareness of this threat, the industry is investigating economical means to reduce the anthropogenic release of greenhouse gases into the atmosphere. Oil production from the Bakken and Three Forks formations has significantly increased over the last ten years without commensurate augmentation of gas capture infrastructure, which, consequently, resulted in increased flaring of the associated gas. The North Dakota Industrial Commission (NDIC) has set rigorous regulations to reduce flaring. However, operating companies are experiencing challenges to meet NDIC gas capturing limit of 95%, which leads to oil production being curtailed. This paper presents an overview of the latest technologies implemented worldwide to reduce gas flaring and discusses their applicability as well as the advantages and disadvantages of each method. Then, to evaluate North Dakota’s flaring situation, the amount of gas flaring within the recent years is provided. It is discussed that implementation of underground gas storage and methanol portable units may be cost-effective measures to meet the North Dakota gas-capturing objective. A successful implementation of gas recovery technologies can significantly reduce gas emissions and gain potential economic profit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

NDIC:

The North Dakota industrial commission

GOR:

Gas-to-oil ratio

EOR:

Enhanced oil recovery

CAPEX:

Capital expenditure

OPEX:

Operating expenditure

MMBtu:

Million British thermal unit

GTW:

Gas-to-wire

LNG:

Liquified natural gas

ORC:

Organic rankine cycle

Ppm:

Particle per million

MM:

Million

Bbl:

Barrel

References

  1. U.S. Environmental Protection Agency, Global Greenhouse Gas Emissions Data, www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (2021) (accessed October 2021)

  2. Environmental Defense Fund, Methane: A Crucial Opportunity in the Climate Fight, www.edf.org/climate/methane-crucial-opportunity-climate-fight (2021) (accessed October 2021)

  3. Ritchie, H.; Roser, M. Electricity Mix, Our World in Data, https://ourworldindata.org/electricity-mix (2021) (accessed October 2021)

  4. McKinsey & Company, Global Energy Perspective 2021, www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2021 (2021) (accessed October 2021).

  5. International Energy Agency. Pathway to Critical and Formidable Goal of Net-Zero Emissions by 2050 is Narrow but Brings Huge Benefits, According to IEA Special Report. www.iea.org/news/pathway-to-critical-and-formidable-goal-of-net-zero-emissions-by-2050-is-narrow-but-brings-huge-benefits (2021)

  6. North Dakota Industrial Commission, Industrial Commission Provides Clarity to Gas Capture Percentage (2020)

  7. Wilcox, A.: Flaring Issues, Solutions & Technologies, U.S. Department of Energy National Energy Technology Laboratory, DE-FE0031691, (2019)

  8. Saunier, S.; Bergauer, M.A.; Isakova, I.: Best Available Techniques Economically Achievable to Address Black Carbon from Gas Flaring: EU Action on Black Carbon in the Arctic Technical Report 3., pp. 47 (2019)

  9. Rubaszek, M.; Uddin, G.S.: The role of underground storage in the dynamics of the us natural gas market: a threshold model analysis. Energy Econ. (2020). https://doi.org/10.1016/j.eneco.2020.104713

    Article  Google Scholar 

  10. Almeida, J.R.U.C.; De Almeida, E.L.F.; Torres, E.A.; Freires, F.G.M.: Economic value of underground natural gas storage for the Brazilian power sector. Energy Policy 2018(121), 488–497 (2021). https://doi.org/10.1016/j.enpol.2018.07.005(accessedOctober

    Article  Google Scholar 

  11. Confort, M.J.F.; Mothe, C.G.: Estimating the required underground natural gas storage capacity in Brazil from the gas industry characteristics of countries with gas storage facilities. J. Nat. Gas Sci. Eng. 18, 120–130 (2014). https://doi.org/10.1016/j.jngse.2014.02.004

    Article  Google Scholar 

  12. Wang, X.; Economides, M.J.: Purposefully built underground natural gas storage. J. Nat. Gas Sci. Eng. 9, 130–137 (2012). https://doi.org/10.1016/j.jngse.2012.06.003

    Article  Google Scholar 

  13. Eren, T.; Polat, C.: Natural gas underground storage and oil recovery with horizontal wells. J. Pet. Sci. Eng. (2020). https://doi.org/10.1016/j.petrol.2019.106753

    Article  Google Scholar 

  14. Liu, W.; Jiang, D.; Chen, J.; Daemen, J.J.K.; Tang, K.; Wu, F.: Comprehensive feasibility study of two-well-horizontal caverns for natural gas storage in thinly-bedded salt rocks in China. Energy 143, 1006–1019 (2018). https://doi.org/10.1016/j.energy.2017.10.126

    Article  Google Scholar 

  15. Mgbaja, U.M.; Enwere, N.: Reservoir characterization, simulation & estimation of storage capacity of depleted reservoirs in Niger Delta for underground natural gas storage. Paper presented at the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria. DOI: https://doi.org/10.2118/189058-MS. (2017)

  16. Anyadiegwu, C. I.: Development of depleted oil reservoirs for simultaneous gas injection for underground natural gas storage and enhanced oil recovery in Nigeria. Paper presented at the SPE Nigeria Annual International Conference and Exhibition. Lagos, Nigeria. https://doi.org/10.2118/184270-MS (2016) (accessed October 2021)

  17. Acocella, A.J.: System model of small- scale gas-to-methanol conversion by engine reformers, submitted for master thesis Massachusetts Institute of Technology (2015)

  18. Banister, J.; Rumbold, S. A.: Compact gas-to-methanol process and its application to improved oil recovery. 2005 Heatric division of Meggitt (UK) Ltd (2005)

  19. Pappas, D.K.; Borfecchia, E.; Dyballa, M.; Pankin, I.A.; Lomachenko, K.A.; Martini, A., et al.: Methane to methanol: structure-activity relationships for Cu-CHA. J. Am. Chem. Soc. 139, 14961–14975 (2017). https://doi.org/10.1021/jacs.7b06472

    Article  Google Scholar 

  20. Dyballa, M.; Pappas, D.K.; Kvande, K.; Borfecchia, E.; Arstad, B.; Beato, P., et al.: On how copper mordenite properties govern the framework stability and activity in the methane-to- methanol conversion. ACS Catal. 9, 365–375 (2019). https://doi.org/10.1021/acscatal.8b04437

    Article  Google Scholar 

  21. Bjorck, C.E.; Dobson, P.D.; Pandhal, J.: Biotechnological conversion of methane to methanol: evaluation of progress and potential. AIMS Bioeng. 5(1), 1–38 (2018). https://doi.org/10.3934/bioeng.2018.1.1

    Article  Google Scholar 

  22. Han, B.; Su, T.; Wu, H., et al.: Paraffin oil as a “methane vector” for rapid and high cell density cultivation of methylosinus trichosporium OB3b. Appl. Biochem. Biotech. 83, 669–677 (2009)

    Google Scholar 

  23. Jiang, H.; Chen, Y.; Jiang, P., et al.: Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem. Eng. J. 49, 277–288 (2010). https://doi.org/10.1016/j.bej.2010.01.003

    Article  Google Scholar 

  24. Hakemian, A.S.; Rosenzweig, A.C.: The biochemistry of methane oxidation. Annu. Rev. Biochem. 76, 223–241 (2007). https://doi.org/10.1146/annurev.biochem.76.061505.175355

    Article  Google Scholar 

  25. Devos, Y.; Maeseele, P.; Reheul, D., et al.: Ethics in the societal debate on genetically modified organisms: a (Re) quest for sense and sensibility. J Agr. Environ. Ethic. 21, 29–61 (2007)

    Article  Google Scholar 

  26. Strong, P.J.; Xie, S.; Clarke, W.P.: Methane as a resource: can the methanotrophs add value? Environ. Sci. Technol. 49, 4001–4018 (2015). https://doi.org/10.1021/es504242n

    Article  Google Scholar 

  27. Duan, C.; Luo, M.; Xing, X.: High-rate conversion of methane to methanol by methylosinus trichosporium OB3b. Biores. Technol. 102, 7349–7353 (2011)

    Article  Google Scholar 

  28. Pen, N.; Soussan, L.; Belleville, M.P., et al.: An innovative membrane bioreactor for methane biohydroxylation. Biores. / 174, 42–52 (2014)

    Article  Google Scholar 

  29. Furuto, T.; Takeguchi, M.; Okura, I.: Semicontinuous methanol biosynthesis by methylosinus trichosporium OB3b. J. Mol. Catal. A-Chem. 144, 257–261 (1990)

    Article  Google Scholar 

  30. Frank, J.; van Krimpen, S.H.; Verwiel, P.E., et al.: On the mechanism of inhibition of methanol dehydrogenase by cyclopropane-derived inhibitors. Eur. J. Biochem. 184, 187–195 (1989)

    Article  Google Scholar 

  31. Takeguchi, M.; Furuto, T.; Sugimori, D., et al.: Optimization of methanol biosynthesis by methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Appl. Biochem. Biotech. 68, 143–152 (1997)

    Article  Google Scholar 

  32. Cox, J.M.; Day, D.J.; Anthony, C.: the interaction of methanol dehydrogenase and its electron acceptor, cytochrome cl in methylotrophic bacteria. BBA-Protein. Struct. M. 1119, 97–106 (1992)

    Article  Google Scholar 

  33. Dales, S.L.; Anthony, C.: The interaction of methanol dehydrogenase and its cytochrome electron acceptor. Biochem. J. 312, 261–265 (1995)

    Article  Google Scholar 

  34. Xin, J.Y.; Cui, J.R.; Niu, J.Z., et al.: Production of methanol from methane by methanotrophic bacteria. Biocatal. Biotransfor. 22, 225–229 (2009)

    Article  Google Scholar 

  35. Whittenbury, R.; Phillips, K.C.; Wilkinson, J.F.: Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61, 205–218 (1970)

    Article  Google Scholar 

  36. Stark, D.; von Stockar, U.: In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. Adv. Biochem. Eng/Biotechnol. 80, 149–175 (2003)

    Google Scholar 

  37. Mehta, P.K.; Ghose, T.K.; Mishra, S.: methanol biosynthesis by covalently immobilized cells of methylosinus trichosporium: batch and continuous studies. Biotechnol. Bioeng. 37(551), 556 (1991)

    Google Scholar 

  38. Sugimori, D.; Takeguchi, M.; Okura, I.: Biocatalytic methanol production from methane with methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Biotechnol. Lett. 17, 783–784 (1995)

    Article  Google Scholar 

  39. Chen, X.; Li, Y.; Pan, X.; Cortie, D.; Huang, X.; Yi, Z.: Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 7, 1–8 (2016). https://doi.org/10.1038/ncomms12273

    Article  Google Scholar 

  40. Hu, D.; Ordomsky, V.V.; Khodakov, A.Y.: Major routes in the photocatalytic methane conversion into chemicals and fuels under mild conditions. Appl. Catal. B Environ. (2021). https://doi.org/10.1016/j.apcatb.2021.119913

    Article  Google Scholar 

  41. Yu, X.; De Waele, V.; Lofberg, A.; Ordomsky, V.; Khodakov, A.Y.A.Y.: Selective hotocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nat. Commun. 10, 700 (2019). https://doi.org/10.1038/s41467-019-08525-2

    Article  Google Scholar 

  42. Williamson, D.L.; Zeltmann, E.W.: Use of natural gas for electricity generation. Paper presented at the 13th World Petroleum Congress, Buenos Aires, Argentina (1991)

  43. Byrom, S.; Bongers, G.; Boston, A.; Garnett, A.: Future Roles for Natural Gas in Decarbonising the Australian Electricity Supply within the NEM: Total System Costs are Key. Paper presented at the SPE Asia Pacific Oil & Gas Conference and Exhibition, Virtual. DOI: https://doi.org/10.2118/202210-MS. (2020)

  44. Mistry, L.; Wahid, F.; Fitch, P.: Gas to Wire or Gas to Shore: Evaluation of Transitional Clean Energy in Offshore UKCS. Paper presented at the SPE Annual Technical Conference and Exhibition, Virtual. DOI: https://doi.org/10.2118/201602-MS. (2020)

  45. Watanabe, T.; Inoue, H.; Horitsugi, M.; Oya, S.: Gas to Wire System (GTW) for Developing “Small Gas Field” and Exploiting “Associated Gas,” Paper SPE-103746-MS presented at International Oil & Gas Conference and Exhibition, Beijing, China (2006)

  46. Kiss, G.; Barckholtz, T.A.; Blanco, G.; Rodrigo, F.; Han, L.; O'Neill, B.; Rosen, J.; Sutton, C.R.; Davis, K.E.; Dobek, F.; Geary, T.; Ghezel-Ayagh, H.; Jolly, S.; Willman, C.: CO2 Capture From Natural Gas Combined Cycle Power Generation Using Carbonate Fuel Cells. Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE. DOI: https://doi.org/10.2118/197377-MS. (2019)

  47. Adolfo, D.; Pambour, K.; Brancucci, C.; Carcasci, C.: An integrated solution for planning and operating Power-To-Gas facilities in coupled gas and electricity networks. Paper presented at the PSIG Annual Meeting, Virtual (2021)

  48. Federal Emergency Management Agency. Multi-Hazard Loss Estimation Methodology, Earthquake Model. Washington, D.C., USA: Federal Emergency Management Agency; (2003)

  49. Poljansed, K.; Bono, F.; Gutierrez, E.: Seismic risk assessment of interdependent critical infrastructure systems: the case of european gas and electricity networks. Earthq. Eng. Struct. Dynam. 41(1), 61–79 (2012)

    Article  Google Scholar 

  50. Comerio, M.C.: Estimating downtime in loss modeling. Earthq. Spectra. 22, 349 (2006)

    Article  Google Scholar 

  51. Salimi, M.; Faramarzi, D.; Hosseinian, S.H.; Gharehpetian, G.B.: Replacement of natural gas with electricity to improve seismic service resilience: an application to domestic energy utilities in Iran. Energy (2020). https://doi.org/10.1016/j.energy.2020.117509

    Article  Google Scholar 

  52. Ghorbani, B.; Javadi, Z.; Zendehboudi, S.; Amidpour, M.: Energy, exergy, and economic analyses of a new integrated system for generation of power and liquid fuels using liquefied natural gas regasification and solar collectors. Energy Convers. Manage. (2020). https://doi.org/10.1016/j.enconman.2020.112915

    Article  Google Scholar 

  53. He, L.; Lu, A.; Zhang, J.; Geng, L.; Cai, Y.; Li, X.: Economic dispatch of multi-area integrated electricity and natural gas systems considering emission and hourly spinning reserve constraints. Int. J. Electr. Power Energy Syst. (2021). https://doi.org/10.1016/j.ijepes.2021.107177

    Article  Google Scholar 

  54. Sedighnezhad, L.; Hosseini, S.A.; Esmaeilzadeh, F.; Mowla, D.: Experimental investigation of supercritical methane injection in oil fields on salt deposit formation by gas anti solvent process. J. Supercrit. Fluids 85, 110–115 (2014). https://doi.org/10.1016/j.supflu.2013.10.013

    Article  Google Scholar 

  55. Liu, K.; Song, C.; Subramani, V. (eds.): Hydrogen and syngas production and purification technologies. John Wiley & sons, NJ (2009)

    Google Scholar 

  56. Boretti, A.: Production of hydrogen for export from wind and solar energy, natural gas, and coal in Australia. Int. J. Hydrog. Energy 45(7), 3899–3904 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.080

    Article  Google Scholar 

  57. Iora, P.; Taher, M.A.A.; Chiesa, P.; Brandon, N.P.: A novel system for the production of pure hydrogen from natural gas based on solid oxide fuel cell-solid oxide electrolyzer. Int. J. Hydrog. Energy 35(22), 12680–12687 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.078

    Article  Google Scholar 

  58. Nguyen, D.D.; Ngo, S.I.; Lim, Y.-I.; Kim, W.; Lee, U.-D.; Seo, D.; Yoon, W.-L.: Optimal design of a sleeve-type steam methane reforming reactor for hydrogen production from natural gas. Int. J. Hydrog. Energy 44(3), 1973–1987 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.188

    Article  Google Scholar 

  59. Nago, S.I.; Lim, Y.; Kim, W.; Seo, D.J.; Yoon, W.L.: Computational fluid dynamics and experimental validation of a compact steam methane reformer for hydrogen production from natural gas. Appl. Energy 236, 340–353 (2019). https://doi.org/10.1016/j.apenergy.2018.11.075

    Article  Google Scholar 

  60. Perdikaris, N.; Panopoulos, K.D.; Hofmann, P.; Spyrakis, S.; Kakaras, E.: Design and exergetic analysis of a novel carbon free tri-generation system for hydrogen, power and heat production from natural gas, based on combined solid oxide fuel and electrolyser cells. Int. J. Hydrog. Energy 35(6), 2446–2456 (2010). https://doi.org/10.1016/j.ijhydene.2009.07.084

    Article  Google Scholar 

  61. Pena Lopez, J.A.; Somiari, I.; Vasilios, I.: Manousiouthakis, hydrogen/formic acid production from natural gas with zero carbon dioxide emissions. J. Nat. Gas Sci. Eng. 49, 84–93 (2018). https://doi.org/10.1016/j.jngse.2017.11.003

    Article  Google Scholar 

  62. Petrescu, L.; Müller, C.R.; Cormos, C.-C.: Life cycle assessment of natural gas-based chemical looping for hydrogen production. Energy Procedia 63, 7408–7420 (2014). https://doi.org/10.1016/j.egypro.2014.11.777

    Article  Google Scholar 

  63. Xuan, G.; Liu, F.; Zhang, F.; Hu, Y.; Miao, J.; Yang, L.: Mechanism of improving the stability of activated carbon catalyst by trace H2S impurities in natural gas for hydrogen production from methane decomposition. Fuel (2021). https://doi.org/10.1016/j.fuel.2021.120884

    Article  Google Scholar 

  64. Morsy, M.H.: Modeling study on the production of hydrogen/syngas via partial oxidation using a homogeneous charge compression ignition engine fueled with natural gas. Int. J. Hydrog. Energy 39(2), 1096–1104 (2014). https://doi.org/10.1016/j.ijhydene.2013.10.160

    Article  Google Scholar 

  65. Salkuyeh, Y.K.; Saville, B.A.; MacLean, H.L.: Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies. Int. J. Hydrogen Energy 42(30), 18894–18909 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.219

    Article  Google Scholar 

  66. Ting, L.H.; Man, L.H.; Wai Yee, N.G.; Yihan, J.U.; Koon Fung, L.A.M.: Techno-economic analysis of distributed hydrogen production from natural gas. Chin. J. Chem. Eng. 20(3), 489–496 (2012)

    Article  Google Scholar 

  67. Szima, S.; Cormos, C.C.: Techno-economic assessment of flexible decarbonized hydrogen and power co-production based on natural gas dry reforming. Int. J. Hydrog. Energy 44(60), 31712–31723 (2019). https://doi.org/10.1016/j.ijhydene.2019.10.115

    Article  Google Scholar 

  68. Chisalita, D.-A.; Cormos, C.-C.: Techno-economic assessment of hydrogen production processes based on various natural gas chemical looping systems with carbon capture. Energy 181, 331–344 (2019). https://doi.org/10.1016/j.energy.2019.05.179

    Article  Google Scholar 

  69. Hamid, U.; Rauf, A.; Ahmed, U.; Shah, M.S.A.S.; Ahmad, N.: Techno-economic assessment of process integration models for boosting hydrogen production potential from coal and natural gas feedstocks. Fuel (2020). https://doi.org/10.1016/j.fuel.2020.117111

    Article  Google Scholar 

  70. Aoun, A.E.; Maougal, F.; Kabour, L.; Liao, T.; AbdallahElhadj, B.; Behaz, S.: Hydrate mitigation and flare reduction using intermittent Gas Lift in Hassi Messaoud, Algeria. Paper presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA, September 2018. (2021) https://doi.org/10.2118/191542-MS (accessed October 2021)

  71. North Dakota Pipeline Authority Annual report July 1, 2019–June 30, (2020)

  72. https://www.eia.gov/todayinenergy/detail.php?id=50578

  73. Federal Energy Regulatory Commission, Current State of and Issues Concerning Underground Natural Gas Storage, Staff Report, Docket No. AD04-11-000, (2004)

Download references

Acknowledgements

The authors would like to express their sincere appreciation to the Energy & Environmental Research Center at University of North Dakota for the great financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ala Eddine Aoun.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoun, A.E., Rasouli, V. & Khetib, Y. Assessment of Advanced Technologies to Capture Gas Flaring in North Dakota. Arab J Sci Eng 48, 16507–16525 (2023). https://doi.org/10.1007/s13369-023-07611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07611-4

Keywords

Navigation