Skip to main content
Log in

Constructed Wetlands for Wastewater Treatment in Saudi Arabia: Opportunities and Sustainability

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Kingdom of Saudi Arabia (KSA) is a hot, arid, and water-scarce country in the driest region of the world. With daily water usage of 263 l per capita, the Kingdom has an absolute water shortage threshold of 89.5 cubic meters per capita per year. Aquifers, the country's main natural water source, have been severely depleted. Desalination provides 60% of the country's water, with the remainder coming from non-renewable groundwater (less than 40%) and reclaimed wastewater and surface water supplies. Increased wastewater treatment capacity has also given KSA a new way to address its water crisis. KSA aspires to become the largest market in the Gulf Cooperation Council for treated wastewater and water reuse, a viable alternative to desalinated water in non-potable uses. Constructed wetlands (CWs), a natural wastewater treatment approach, can be a sustainable and successful co-generation solution for wastewater treatment. Contaminated water is converted into usable water using CWs. The goal of this work is to fill a huge research gap in the treatment industry by conducting a study on the performance of CWs in hot, arid, and dry climates, as well as bringing CW technology for wastewater treatment systems within Saudi Arabia. It covered vegetated plant activities, microorganism-mediated biological processes, biomass usage, CH4 extraction, opportunity, sustainability, and circular economy approaches. It reviewed the limited publications on CW in the Kingdom of Saudi Arabia (KSA) to summarize the current situation and investigate the technology's potential, and direct future studies in KSA, if any.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. “Saudi Arabia - Climatology | climate change knowledge portal.” https://climateknowledgeportal.worldbank.org/country/saudi-arabia/climate-data-historical (Accessed Aug. 20, 2022)

  2. Barjees Baig, M., et al.: Water resources in the kingdom of saudi arabia: challenges and strategies for improvement. Global Issues Water Policy 23, 135–160 (2020). https://doi.org/10.1007/978-3-030-29274-4_7

    Article  Google Scholar 

  3. UN Water, “Report 4: managing water under uncertainty and risk (Vol. 1), Knoledge base (Vol. 2) and facing the challenges (Vol. 3).,” vol. 1, p. 867, (2012)

  4. Hasanean, H.; Almazroui, M.: Rainfall: features and variations over Saudi Arabia, a review. Climate 3, 578–626 (2015). https://doi.org/10.3390/cli3030578

    Article  Google Scholar 

  5. ElNesr, M.N.; Alazba, A.; Abu-Zreig, M.: Analysis of evapotranspiration variability and trends in the Arabian Peninsula. Am J Environ Sci 6(6), 535–547 (2010). https://doi.org/10.3844/ajessp.2010.535.547

    Article  Google Scholar 

  6. DeNicola, E., Aburizaiza, O. S., Siddique, A., Khwaja, H., Carpenter, D. O.: “Climate change and water scarcity: the case of Saudi Arabia,” (2015)

  7. UN Saudi Business Council, “Water in Saudi Arabia: Desalination, Wastewater, and Privatization - USSBC,” UN Saudi Business Council , 2021. https://ussaudi.org/water-in-saudi-arabia-desalination-wastewater-and-privatization/ (Accessed Jan. 16, 2022).

  8. Al-Shayaa, M. and Barjees Baig, M.: “Water conservation in the kingdom of Saudi Arabia for better environment: Implications for extension and education,” 2011. [Online]. Available: https://www.researchgate.net/publication/290287540

  9. EERE, “Powering the Blue Economy: Exploring Opportunities for Marine Renewable Energy in Maritime Markets Desalination,” 2019.

  10. Thomas and Herbarium, J.: “Flora of Saudi Arabia,” 2020. http://plantdiversityofsaudiarabia.info/Biodiversity-Saudi-Arabia/Flora/Flora.htm (Accessed Feb. 01, 2022).

  11. Kivaisi, A.K.: The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol Eng 16(4), 545–560 (2001). https://doi.org/10.1016/S0925-8574(00)00113-0

    Article  Google Scholar 

  12. Avellán, T.; Gremillion, P.: Constructed wetlands for resource recovery in developing countries. Renew. Sustain. Energy Rev. 99, 42–57 (Jan.2019). https://doi.org/10.1016/J.RSER.2018.09.024

    Article  Google Scholar 

  13. Ricart, S.; Rico-Amorós, A.M.: Constructed wetlands to face water scarcity and water pollution risks: Learning from farmers’ perception in alicante, spain. Water (Switzerland) 13, 17 (2021). https://doi.org/10.3390/w13172431

    Article  Google Scholar 

  14. Hassan, I., Chowdhury, S. R., Prihartato, P. K., and Razzak, S. A.: “Processes Wastewater treatment using constructed wetland: current trends and future potential,” 2021.

  15. Royal commission for Riyadh City, “Bioremediation of surface water in Wadi Hanifah,” (2018)

  16. Aramco, “New wetland adding protection | Aramco,” 2019. https://www.aramco.com/en/news-media/news/2019/new-wetland-adding-protection (Accessed Jan. 29, 2022).

  17. Aramco, “Saudi Aramco project development wastewater treatment facilities Jeddah refinery and marine area,” (2007)

  18. Avellan, C.T.; Ardakanian, R.; Gremillion, P.: The role of constructed wetlands for biomass production within the water-soil-waste nexus. Water Sci. Technol. 75(10), 2237–2245 (2017). https://doi.org/10.2166/wst.2017.106

    Article  Google Scholar 

  19. He, M., et al.: Assessment of constructed wetland plant biomass for energy utilization. Chin. J. App. Environ. Biol. 17(4), 527–531 (2011). https://doi.org/10.3724/SP.J.1145.2011.00527

    Article  Google Scholar 

  20. Masi, F.; Rizzo, A.; Regelsberger, M.: The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J. Environ. Manage. 216, 275–284 (2018). https://doi.org/10.1016/j.jenvman.2017.11.086

    Article  Google Scholar 

  21. Stefanakis, A.I.: The role of constructed wetlands as green infrastructure for sustainable urban water management. Sustainability (Switzerland) 11, 24 (2019). https://doi.org/10.3390/SU11246981

    Article  Google Scholar 

  22. Stefanakis, A.: “Constructed wetlands for sustainable wastewater treatment in hot and arid climates: opportunities, challenges and case studies in the Middle East. Water (Switzerland) 12, 1665 (2020). https://doi.org/10.3390/W12061665

    Article  Google Scholar 

  23. Breuer, R.: “Nimr water treatment project, Oman,” 2019.

  24. Stefanakis, A., Prigent, S., and Breuer, R.: Wetland technology : practical information on the design and application of treatment wetlands. (2020)

  25. Stefanakis, A.I.; Prigent, S.; Breuer, R.: “Integrated produced water management in a desert oilfield using wetland technology and innovative reuse practices”, in constructed wetlands for industrial wastewater treatment. Wiley (2018)

    Google Scholar 

  26. Tsaliki, M, and Maclaren, C.: “Conserving Ras Al Khaimah’s botanical diversity,” (2021)

  27. Mander, Ü.; Tournebize, J.; Mitsch, W.J.: Denitrification in constructed wetlands for wastewater treatment and created riverine wetlands. Wetland Book: I: Struct. Funct. , Manage., Methods 25, 1983–1990 (2018). https://doi.org/10.1007/978-90-481-9659-3_324

    Article  Google Scholar 

  28. Saeed, T.; Sun, G.: A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manage. 112, 429–448 (Dec.2012). https://doi.org/10.1016/j.jenvman.2012.08.011

    Article  Google Scholar 

  29. Langergraber, G.: The role of plant uptake on the removal of organic matter and nutrients in subsurface flow constructed wetlands: a simulation study. Water Sci. Technol. 51(9), 213–223 (2005). https://doi.org/10.2166/WST.2005.0322

    Article  Google Scholar 

  30. Gabr, M.: Design methodology of a new surface flow constructed wetland system, case study: east south El-Kantara region north sinai, Egypt. Port-Said Eng. Res. J. 24(1), 23–34 (Mar.2020). https://doi.org/10.21608/pserj.2020.19040.1016

    Article  Google Scholar 

  31. Jenssen, P.D.; Maehlum, T.; Krogstad, T.: Potential use of constructed wetlands for wastewater treatment in northern environments. Water Sci. Technol. 28(10), 149–157 (1993). https://doi.org/10.2166/wst.1993.0223

    Article  Google Scholar 

  32. Liu, D., et al.: Constructed wetlands in China: recent developments and future challenges. Front. Ecol. Environ. 7(5), 261–268 (Jun.2009). https://doi.org/10.1890/070110

    Article  Google Scholar 

  33. Wang, J., Wong, T. H. F., Chow, F., Breen, P., and Zhang, Y.: “Water sensitive development in Kunshan, China,” (2010)

  34. Shukla, R.; Gupta, D.; Singh, G.; Mishra, V.K.: Performance of horizontal flow constructed wetland for secondary treatment of domestic wastewater in a remote tribal area of Central India. Sustain. Environ. Res. 31(1), 1–10 (Dec.2021). https://doi.org/10.1186/S42834-021-00087-7/FIGURES/4

    Article  Google Scholar 

  35. Axler, R.; Henneck, J.; McCarthy, B.: Residential subsurface flow treatment wetlands in northern Minnesota. Water Sci. Technol. 44(11–12), 345–352 (2001). https://doi.org/10.2166/wst.2001.0850

    Article  Google Scholar 

  36. Greenway, M.: “The role of constructed wetlands in secondary effluent treatment and water reuse in subtropical and arid Australia,” (2005)

  37. Truu, J.; Espenberg, M.: Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review sustainable technologies for phosphorus reduction in constructed wetlands: removal processes and long-term perfomance of hydrated oil-shale ash filters view project oil-degrading microbiome of the Baltic sea view project. Article Open Biotechnol. J. (2015). https://doi.org/10.2174/1874070720150430E009

    Article  Google Scholar 

  38. Varma, M.; Gupta, A.K.; Ghosal, P.S.; Majumder, A.: A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature. Sci. Total Environ. 755, 142540 (Feb.2021). https://doi.org/10.1016/J.SCITOTENV.2020.142540

    Article  Google Scholar 

  39. Hammer, D.A.; Knight, R.L.: Designing CWs for nitrogen removal. Water Sci. Technol. 29(4), 15–27 (1994)

    Article  Google Scholar 

  40. Xie, S.-G.; Zhang, X.-J.; Wang, Z.-S.: Temperature effect on aerobic denitrification and nitrification. J. Environ. Sci. 15, 669–673 (2003)

    Google Scholar 

  41. Werker, A.G.; Dougherty, J.M.; McHenry, J.L.; van Loon, W.A.: Treatment variability for wetland wastewater treatment design in cold climates. Ecol. Eng. 19, 1–11 (2002)

    Article  Google Scholar 

  42. Kumar, S.; Dutta, V.: “Efficiency of constructed wetland microcosms (CWMs) for the treatment of domestic wastewater using aquatic macrophytes. Environ. Biotechnol.: Sustain. Fut. 26, 287–307 (2019).

    Google Scholar 

  43. Yonghong, W.: “Periphyton,” Periphyton, pp. 225–249, 2017, doi: https://doi.org/10.1016/B978-0-12-801077-8.00009-0.

  44. Rashed, M.N.: “Adsorption technique for the removal of organic pollutants from water and wastewater.” Organic Pollut.- Monitor. Risk Treatm. (Jan.2013). https://doi.org/10.5772/54048

    Article  Google Scholar 

  45. Mugo, S.M.; Zhang, Q.: “Nano-sized structured platforms for facile solid-phase nanoextraction for molecular capture and (Bio)chemical analysis. Nanomater. Des. Sens. Appl. 1016, 153–195 (2019). https://doi.org/10.1016/B978-0-12-814505-0.00005-9

    Article  Google Scholar 

  46. de Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M.: Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain. Mater. Technol. 9, 10–40 (2016). https://doi.org/10.1016/j.susmat.2016.06.002

    Article  Google Scholar 

  47. Stefanakis, A. I., Bauer, S. P. and Llc, N.: “The thermal regime of a large Constructed Wetland in the desert environment,” 2018. [Online]. Available: https://www.researchgate.net/publication/328333310

  48. Al-Obaid, S., et al.: An overview of wetlands of Saudi Arabia: Values, threats, and perspectives. Ambio 46(1), 98–108 (Feb.2017). https://doi.org/10.1007/s13280-016-0807-4

    Article  Google Scholar 

  49. Jaramillo, M.F.; Restrepo, I.: Wastewater reuse in agriculture: a review about its limitations and benefits. Sustainability (Switzerland) 9, 10 (2017). https://doi.org/10.3390/su9101734

    Article  Google Scholar 

  50. Thomas and Herbarium, J.: “Aquatic flora of Saudi Arabia- Dr. Jacob Thomas Pandalayil.” http://plantdiversityofsaudiarabia.info/Biodiversity-Saudi-Arabia/Vegetation/Aquatic%20flora.htm (Accessed Jan. 19, 2022).

  51. Ahmadini, A. Msmali, A. Mutum, Z. and Singh Raghav, Y.: “Modeling on Wastewater Treatment process in saudi arabia: a perspective of Covid-19,” 2021, doi: https://doi.org/10.1101/2021.11.22.21266599.

  52. Albalawneh, A.; Chang, T.K.; Chou, C.S.; Naoum, S.: Efficiency of a horizontal sub-surface flow constructedwetland treatment system in an arid area. Water (Switzerland) 8, 2 (2016). https://doi.org/10.3390/w8020051

    Article  Google Scholar 

  53. Trottier, J.: “Riyadh Bioremediation Facility Methods,” (2015)

  54. Krieger, K. A.: “Effectiveness of a coastal wetland in reducing the movement of agricultural pollutants into Lake Erie,” (2001)

  55. Krieger, K.A.: Effectiveness of a coastal wetland in reducing pollution of a Laurentian great lake: hydrology, sediment, and nutrients. Wetlands 23(4), 778–791 (2003)

    Article  Google Scholar 

  56. Saleh, A. A. S., Ibrahim, N., Awang, N. R. and Akbar, N. A.: “Characteristics study of ammonia-n and phosphorus in sewage wastewater effluent: A case study of Alkhumrah, Jeddah Wastewater Treatment Plant,” in IOP Conference Series: Earth and Environmental Science, vol. 842, no. 1. doi: https://doi.org/10.1088/1755-1315/842/1/012034 (2021)

  57. Moroyoqui-Rojo, L.; Flores-Verdugo, F.; Escobedo-Urias, D.C.; Flores-de-Santiago, F.; González-Farías, F.: Potential use of two subtropical mangrove species Laguncularia racemosa and Rhizophora mangle for nutrient removal in closed recirculating systems. Ciencias Marinas 41, 255–268 (2015)

    Article  Google Scholar 

  58. Mahmoud, S.H.; Alazba, A.A.: A coupled remote sensing and the surface energy balance based algorithms to estimate actual evapotranspiration over the western and southern regions of Saudi Arabia. J Asian Earth Sci 124, 269–283 (Jul.2016). https://doi.org/10.1016/j.jseaes.2016.05.012

    Article  Google Scholar 

  59. UN High-Level Political Forum, “First voluntary national review towards saudi arabia’s sustainable tomorrow,” (2018)

  60. M. Arshad and E. Eid, “(PDF) Environmental impact of Jazan economic city on mangrove forests along the Southern Saudi Arabian Red Sea Coast.,” https://www.researchgate.net/publication/325120431_environmental_impact_of_jazan_economic_city_on_mangrove_forests_along_the_southern_saudi_arabian_red_sea_coast (Accessed Feb. 06, 2022) (2017)

  61. Risingsea.net, “impacts of sea level rise and what to do now,” (2009)

  62. Sweetnam, D.: “Assessing and enhancing coastal wetland resilience to climate change | Georgian bay forever,” https://georgianbayforever.org/assess-coastal-wetland-resilience/ (Accessed Jan. 19, 2022) (2018)

  63. Thomas, J.: “Flora of Jazan Province.” http://plantdiversityofsaudiarabia.info/Biodiversity-Saudi-Arabia/Flora/Local%20Floras/Jazan/Flora%20of%20Jazan%20Province.htm (Accessed Jan. 21, 2022).

  64. Cabral, J.P.S.: “Water microbiology. bacterial pathogens and water. Int. J. Environ. Res. Publ. Health 7, 3657 (2010). https://doi.org/10.3390/IJERPH7103657

    Article  Google Scholar 

  65. Al-Samhouri, W. and Al-Naim, M.: “2007 On site review report,” (2001)

  66. “Riyadh Climate, weather by month, average temperature (Saudi Arabia) - Weather spark.” https://weatherspark.com/y/104018/Average-Weather-in-Riyadh-Saudi-Arabia-Year-Round (accessed Aug. 25, 2022).

  67. Alharbi, O. et al.: “Internal water footprint assessment of Saudi Arabia using the Water footprint Assessment Framework (WAF),” 2011. [Online]. Available: http://mssanz.org.au/modsim2011

  68. Royal Commission for Riyadh City, “Riyadh Plants | Reserves and projects,” https://rp.riyadhenv.gov.sa/reserves-and-projects/?lang=en (accessed Feb. 28, 2022) (2015)

  69. Thomas J. :“Wadi Hanifa - Plant diversity in Saudi Arabia.” http://www.plantdiversityofsaudiarabia.info/Biodiversity-Saudi-Arabia/Vegetation/Wadi%20Hanifa/Wadi%20Hanifa.htm (accessed Jan. 20, 2022).

  70. WSUD, “Chapter 8 | Constructed wetlands WSUD engineering procedures for stormwater management in Tasmania 2012 Chapter 8 Constructed Wetlands,” (2012)

  71. “Jeddah Climate, Weather by month, average temperature (Saudi Arabia) - weather spark.” https://weatherspark.com/y/101171/Average-Weather-in-Jeddah-Saudi-Arabia-Year-Round (Accessed Aug. 25, 2022).

  72. Ghazanfar, S.A.; Böer, B.; Al Khulaidi, A.W.; El-Keblawy, A.; Alateeqi, S.: “Plants of Sabkha ecosystems of the Arabian peninsula. Springer (2019)

    Book  Google Scholar 

  73. Imam, A.; Kanaujia, P.K.; Ray Sunil, A.; Suman, K.: Removal of petroleum contaminants through bioremediation with integrated concepts of resource recovery: a review. Indian J Microbiol 61, 250 (2021). https://doi.org/10.1007/s12088-021-00928-4

    Article  Google Scholar 

  74. Jamal, M.T.; Pugazhendi, A.: “Degradation of petroleum hydrocarbons and treatment of refinery wastewater under saline condition by a halophilic bacterial consortium enriched from marine environment (Red Sea), Jeddah Saudi Arabia. 3Biotech 1, 276 (2018). https://doi.org/10.1007/s13205-018-1296-x

    Article  Google Scholar 

  75. European Commission, “Al-Ha’ir Wetland | DOPA Explorer,” https://dopa-explorer.jrc.ec.europa.eu/wdpa/19561 (Accessed Feb. 28, 2022) (2021)

  76. Blumberg, “News-Details:: Blumberg Engineers, Germany,” https://www.blumberg-engineers.com/en/news/news-details?tx_news_pi1%5Baction%5D=detailandtx_news_pi1%5Bcontroller%5D=Newsandtx_news_pi1%5Bnews%5D=288andcHash=1b176cf267d19f88d25498e8e0990d97 (Accessed Jan. 26, 2022) (2021)

  77. Gunes, K., et al.: Construction and maintenance cost analyzing of constructed wetland systems. Water Pract. Technol. 6, 3 (2011). https://doi.org/10.2166/wpt.2011.043

    Article  Google Scholar 

  78. Breuer, R.: “Nimr water treatment project, Oman,” BAUER Resources GmbH, Schrobenhausen, Germany , (2019)

  79. Keniger, L.E.; Gaston, K.J.; Irvine, K.N.; Fuller, R.A.: What are the benefits of interacting with nature? Int. J. Environ. Res. Publ. Health 10, 913–935 (2013). https://doi.org/10.3390/IJERPH10030913

    Article  Google Scholar 

  80. Xu, G.; Li, Y.; Wang, S.; Kong, F.; Yu, Z.: “An overview of methane emissions in constructed wetlands: how do plants influence methane flux during the wastewater treatment? J Freshwater Ecol 34, 333–350 (2019). https://doi.org/10.1080/02705060.2019.1588176

    Article  Google Scholar 

  81. Silvey, C.; Jarecke, K.M.; Hopfensperger, K.; Loecke, T.D.; Burgin, A.J.: Plant species and hydrology as controls on constructed wetland methane fluxes. Soil Sci. Soc. Am. J. 83(3), 848–855 (2019). https://doi.org/10.2136/SSSAJ2018.11.0421

    Article  Google Scholar 

  82. Badarch, M. and Namkhainyam, B.: “Methane recovery and utilization opportunities | ulaanbaatar,” (2009)

  83. Velasco, P.; Jegatheesan, V.; Othman, M.: Recovery of dissolved methane from anaerobic membrane bioreactor using degassing membrane contactors. Front Environ Sci 6, 151 (2018). https://doi.org/10.3389/FENVS.2018.00151/XML/NLM

    Article  Google Scholar 

  84. Moseley, W.: “Wetlands provide ecological and economic benefits,” https://www.noble.org/news/publications/ag-news-and-views/2015/may/wetlands-provide-ecological-and-economic-benefits/ (Accessed Feb. 11, 2022) (2015)

  85. Youssef, A.M.; Sefry, S.A.; Pradhan, B.; Alfadail, E.A.: Analysis on causes of flash flood in Jeddah city (Kingdom of Saudi Arabia) of 2009 and 2011 using multi-sensor remote sensing data and GIS. Geomat. Nat. Haz. Risk 7(3), 1018–1042 (2016). https://doi.org/10.1080/19475705.2015.1012750

    Article  Google Scholar 

  86. US EPA, “Why are Wetlands Important? | US EPA.” https://www.epa.gov/wetlands/why-are-wetlands-important (Accessed Feb. 11, 2022).

  87. Lotze, N.: “Economic Benefits of Wetlands : ConservationTools,” https://conservationtools.org/library_items/1038-Economic-Benefits-of-Wetlands (Accessed Feb. 11, 2022) (2006)

  88. Kane F.: “Saudi Arabia’s methane pledge is a big step forward in fight against climate change | Arab News,”. https://www.arabnews.com/node/1954421 (Accessed Feb. 16, 2022) (2021)

  89. Pinheiro J. E.: “Strategy flows toward natural gas | Aramco,” https://www.aramco.com/en/magazine/elements/2020/strategy-flows-toward-natural-gas (Accessed Feb. 16, 2022) (2020)

Download references

Acknowledgements

The authors would like to thank the Sustainable Water Research Group in the Department of Civil Engineering at Prince Mohammad Bin Fahd University in the Kingdom of Saudi Arabia for their assistance in conducting this study. The authors would like to express their gratitude to the Interdisciplinary Research Center for Membranes and Water Security at King Fahd University of Petroleum and Minerals in Dhahran, Saudi Arabia, for providing a funding grant and financial assistance for this research under project number INMW2105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saidur R. Chowdhury.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnaser, Z.H.A., Chowdhury, S.R. & Razzak, S.A. Constructed Wetlands for Wastewater Treatment in Saudi Arabia: Opportunities and Sustainability. Arab J Sci Eng 48, 8801–8817 (2023). https://doi.org/10.1007/s13369-022-07411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07411-2

Keywords

Navigation