Skip to main content
Log in

Experimentally Verified Numerical Investigation of the Sill Hydraulics for Abruptly Expanding Stilling Basin

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Energy dissipation structures, particularly stilling basins, are critical for defining the hydraulic jump characteristics that are suitable. Appropriate sill geometry for abruptly expanding stilling basins has been investigated and a central rectangular sill has been proposed in the literature. This study has examined the suggested central sill and alternative flip buckets for abruptly expanding stilling basins. A series of experimental and numerical studies were carried out for two different heights of the central sill and two different flip buckets. Simulations have been evaluated using experimental data of laboratory scale, which indicated that they were acceptably precise. For the simulations, the kε turbulence model RNG module was preferred using the volume of fluid methods. The PISO approach was chosen to resolve this equation system numerically. The results showed that the hydraulic jump characteristics are strongly influenced by sill geometry. For the Type-3 sill negative static pressures have not occurred and performs better at energy dissipation than other geometries examined in the study. Higher pressures occurred on the rectangular prism-shaped sills. Maximum static pressure happened on the Type-2 sill. The least static pressure was seen in the Type-4 sill type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

θ :

Angle between pieces of the sills in plane view (−)

α :

Expansion ratio (−)

b :

Width in narrow section (L)

B :

Width in wider section (L)

g :

Gravity acceleration (LT2)

Re :

Reynolds number (−)

Fr:

Froude number (−)

h 1 :

Water depth before hydraulic jump (L)

h 2 :

Water depth after hydraulic jump (L)

h 2 * :

Water depth after classical hydraulic jump (L)

L a :

Apron length in narrow section (L)

L e :

Channel length in wider section (L)

Lr * :

Roller length for classical hydraulic jump (L)

Y :

Sequent depths ratio (−)

Y * :

Sequent depths ratio for classical hydraulic jump (−)

x 1 :

Distance between the toe of the jump and the expansion (L)

S :

Relative sill height (−)

s :

The sill height (L)

U :

Velocity inlet (LT1)

ρ :

Fluid density (ML3)

τ ij :

Coefficient of turbulence (Reynolds) stress (−)

k :

Coefficient of turbulence kinetic energy (−)

μ t :

Coefficient of turbulence kinetic viscosity (−)

References

  1. Bakhmeteff, B.M.: The hydraulic jump in terms of dynamic similarity. Trans. ASCE 101, 630–680 (1936)

    Google Scholar 

  2. Bradley, J.; Peterka, A.: The hydraulic design of stilling basins: hydraulic jumps on a horizontal apron (basin i). J. Hydraul. Div. 83(5), 1–24 (1957)

    Google Scholar 

  3. Rajaratnam, N.; Murahari, V.: A contribution to forced hydraulic jumps. J. Hydraul. Res. 9(2), 217–240 (1971)

    Google Scholar 

  4. Hager, W.H.: Hydraulic jump in non-prismatic rectangular channels. J. Hydraul. Res. 23(1), 21–35 (1985)

    Google Scholar 

  5. Hager, W.H.: Hydraulic jump in U-shaped channel. J. Hydraul. Eng. 115(5), 667–675 (1989)

    Google Scholar 

  6. Gharangik, A.M.; Chaudhry, M.H.: Numerical simulation of hydraulic jump. J. Hydraul. Eng. 117(9), 1195–1211 (1991)

    Google Scholar 

  7. Bremen, R.; Hager, W.H.: T-jump in abruptly expanding channel. J. Hydraul. Res. 31(1), 61–78 (1993)

    Google Scholar 

  8. Bremen, R.; Hager, W.H.: Expanding stilling basin. Proc. Inst. Civ. Eng.-Water Maritime Energy 106(3), 215–228 (1994)

    Google Scholar 

  9. Zare, H.; Doering, J.: Forced hydraulic jumps below abrupt expansions. J. Hydraul. Eng. 137(8), 825–835 (2011)

    Google Scholar 

  10. Deng, J., et al.: Analysis of pressure differences and water transverse movement in a partial-flip bucket. J. Hydraul. Eng. 146(9), 04020063 (2020)

    Google Scholar 

  11. Juon, R.; Hager, W.H.: Flip bucket without and with deflectors. J. Hydraul. Eng. 126(11), 837–845 (2000)

    Google Scholar 

  12. Tian, R.; Wu, J.-H.; Ma, F.: Flow regime and energy dissipation of SFS-type flip buckets. J. Hydrodyn. 32(1), 179–182 (2020)

    Google Scholar 

  13. Heller, V.; Hager, W.H.; Minor, H.-E.: Ski jump hydraulics. J. Hydraul. Eng. 131(5), 347–355 (2005)

    Google Scholar 

  14. Moghadam, M.K.; Amini, A.; Hosseini, H.: Experimental evidence dynamic pressures reduction on plunge pool floors downstream flip bucket for increasing downstream face slopes. Water Supply 20(5), 1834–1846 (2020)

    Google Scholar 

  15. Parsaie, A.; Azamathulla, H.M.; Haghiabi, A.H.: Prediction of discharge coefficient of cylindrical weir–gate using GMDH-PSO. ISH J. Hydraul. Eng. 24(2), 116–123 (2018)

    Google Scholar 

  16. Chanson, H.; Brattberg, T.: Experimental study of the air–water shear flow in a hydraulic jump. Int. J. Multiph. Flow 26(4), 583–607 (2000)

    MATH  Google Scholar 

  17. Dey, S.; Nath, T.K.; Bose, S.K.: Submerged wall jets subjected to injection and suction from the wall. J. Fluid Mech. 653, 57–97 (2010)

    MATH  Google Scholar 

  18. Ohtsu, I.: Free Hydraulic Jump and Submerged Hydraulic Jump in Trapezoidal and Rectangular Channels. Japan Society of Civil Engineers, Tokyo (1976)

    Google Scholar 

  19. Torkamanzad, N., et al.: Hydraulic jump below abrupt asymmetric expanding stilling basin on rough bed. Water 11(9), 1756 (2019)

    Google Scholar 

  20. Chachereau, Y.; Chanson, H.: Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Thermal Fluid Sci. 35(6), 896–909 (2011)

    Google Scholar 

  21. Felder, S.; Pfister, M.: Comparative analyses of phase-detective intrusive probes in high-velocity air–water flows. Int. J. Multiph. Flow 90, 88–101 (2017)

    Google Scholar 

  22. Mouaze, D.; Murzyn, F.; Chaplin, J.R.: Free surface length scale estimation in hydraulic jumps. ASME J. Fluids Eng. 127(6), 1191–1193 (2005). https://doi.org/10.1115/1.2060736

    Article  MATH  Google Scholar 

  23. Zhang, G.; Chanson, H.: Air-water flow properties in stepped chutes with modified step and cavity geometries. Int. J. Multiph. Flow 99, 423–436 (2018)

    MathSciNet  Google Scholar 

  24. Demirel, E.: Measured and simulated flow downstream of the submerged sluice gate. Water Environ. J. 29(3), 446–455 (2015)

    Google Scholar 

  25. Javan, M.; Eghbalzadeh, A.: 2D numerical simulation of submerged hydraulic jumps. Appl. Math. Model. 37(10–11), 6661–6669 (2013)

    MathSciNet  Google Scholar 

  26. Ma, F.; Hou, Y.; Prinos, P.: Numerical calculation of submerged hydraulic jumps. J. Hydraul. Res. 39(5), 493–503 (2001)

    Google Scholar 

  27. Jesudhas, V., et al.: Closure to “turbulence characteristics of classical hydraulic jump using DES” by Vimaldoss Jesudhas, Ram Balachandar, Vesselina Roussinova, and Ron Barron. J. Hydraul. Eng. 146(9), 07020012 (2020)

    Google Scholar 

  28. Witt, A.; Gulliver, J.S.; Shen, L.: Numerical investigation of vorticity and bubble clustering in an air entraining hydraulic jump. Comput. Fluids 172, 162–180 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Foda, A.S., et al.: Three-dimensional numerical study of submerged spatial hydraulic jumps. J. Hydrol. Hydromech. 68(3), 211–222 (2020)

    Google Scholar 

  30. Jesudhas, V.; Balachandar, R.; Bolisetti, T.: Numerical study of a symmetric submerged spatial hydraulic jump. J. Hydraul. Res. 58(2), 335–349 (2020)

    Google Scholar 

  31. Jesudhas, V., et al.: Turbulence characteristics of classical hydraulic jump using DES. J. Hydraul. Eng. 144(6), 04018022 (2018)

    Google Scholar 

  32. Riasi, A.; Nourbakhsh, A.; Raisee, M.: Energy dissipation in unsteady turbulent pipe flows caused by water hammer. Comput. Fluids 73, 124–133 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Li, L.-X., et al.: Experimental investigation of the optimization of stilling basin with shallow-water cushion used for low Froude number energy dissipation. J. Hydrodyn. 27(4), 522–529 (2015)

    Google Scholar 

  34. Zhang, Q.-L., et al.: Role of negative pressure in structural responses of gravity dams to underwater explosion loadings: the need to consider local cavitation. Eng. Fail. Anal. 122, 105270 (2021)

    Google Scholar 

  35. Novak, P., et al.: Hydraulic Modelling: An Introduction: Principles, Methods and Applications. CRC Press, Boca Raton (2018)

    Google Scholar 

  36. Akoz, M.S.; Kirkgoz, M.S.; Oner, A.A.: Experimental and numerical modeling of a sluice gate flow. J. Hydraul. Res. 47(2), 167–176 (2009)

    Google Scholar 

  37. Yakhot, V., et al.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 4(7), 1510–1520 (1992)

    MathSciNet  MATH  Google Scholar 

  38. Shaari, K.Z.K.; Awang, M.: Engineering Applications of Computational Fluid Dynamics. Springer, Berlin (2015)

    Google Scholar 

  39. Hirt, C.W.; Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    MATH  Google Scholar 

  40. Gumus, V., et al.: Numerical modeling of submerged hydraulic jump from a sluice gate. J. Irrig. Drain. Eng. 142(1), 04015037 (2016)

    Google Scholar 

  41. Ohtsu, I.; Yasuda, Y.; Ishikawa, M.: Submerged hydraulic jumps below abrupt expansions. J. Hydraul. Eng. 125(5), 492–499 (1999)

    Google Scholar 

  42. Zare, H.K.; Baddour, R.E.: Three-dimensional study of spatial submerged hydraulic jump. Can. J. Civ. Eng. 34(9), 1140–1148 (2007)

    Google Scholar 

  43. Roache, P.J.: Verification of codes and calculations. AIAA J. 36(5), 696–702 (1998)

    Google Scholar 

  44. Herbrand, K.: The spatial hydraulic jump. J. Hydraul. Res. 11(3), 205–218 (1973)

    Google Scholar 

  45. de Dios, M., et al.: Experimental characterization of three-dimensional flow vortical structures in submerged hydraulic jumps. J. Hydro-Environ. Res. 15, 1–12 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported by IUBAP (Inonu University Scientific Projects Unit) under the project number of the FBG-2020-2186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enes Gul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydogdu, M., Gul, E. & Dursun, O.F. Experimentally Verified Numerical Investigation of the Sill Hydraulics for Abruptly Expanding Stilling Basin. Arab J Sci Eng 48, 4563–4581 (2023). https://doi.org/10.1007/s13369-022-07089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07089-6

Keywords

Navigation