Skip to main content
Log in

Simulation of Planar Mechanism Dynamics with Index-I Formulation and Projection Method

Solution of Differential Algebraic Equations

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents the application details of a methodology, which can be used to simulate any planar mechanism having revolute, prismatic and ground joints. To this end, in this article, Index-I formulation and Projection method, which are used to solve differential algebraic equations representing the dynamics of a multi-body system, were discussed. Constraint violation elimination method was also studied within this framework. The tangent and null space concepts were discussed, and it was shown that these spaces can be determined by the singular value decomposition of constraint Jacobian matrix. In this context, application details of both Index-I formulation and Projection method were illustrated on an example; in this example, off-set slider-crank mechanism dynamics was simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bauchau, O.A.; Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2008)

    Article  Google Scholar 

  2. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  3. Baumgarte, J.: A new method of stabilization for holonomic constraints. ATJAM 50, 869 (1983)

    MathSciNet  MATH  Google Scholar 

  4. Blajer, W.: An orthonormal tangent space method for constrained multibody systems. Comput. Methods Appl. Mech. Eng. 121(1–4), 45–57 (1995)

    Article  MathSciNet  Google Scholar 

  5. Blajer, W.: A geometrical interpretation and uniform matrix formulation of multibody system dynamics. ZAMM-J. Appl. Math. Mech./Z. Angewandte Mathematik und Mechanik: Appl. Math. Mech. 81(4), 247–259 (2001)

    Article  MathSciNet  Google Scholar 

  6. Blajer, W.: Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems. Multibody Sys.Dyn. 7(3), 265–284 (2002)

    Article  MathSciNet  Google Scholar 

  7. Blajer, W.; Schiehlen, W.; Schirm, W.: A projective criterion to the coordinate partitioning method for multibody dynamics. Arch. Appl. Mech. 64(2), 86–98 (1994)

    Article  Google Scholar 

  8. de Falco, D.; Pennestrì, E.; Vita, L.: The udwadia-kalaba formulation: A report on its numerical efficiency in multibody dynamics simulations and on its teaching effectiveness. Multibody Dyn. 2005, 21–24 (2005)

    Google Scholar 

  9. Guo, W.; Gao, F.; Mekid, S.: A new analysis of workspace performances and orientation capability for 3-dof planar manipulators. Int. J. Robot. Autom. 25(2), 89 (2010)

    Google Scholar 

  10. Haug, E.J.: An ordinary differential equation formulation for multibody dynamics: Holonomic constraints. J. Comput. Inf. Sci. Eng. 16(2), 021007 (2016)

    Article  Google Scholar 

  11. Haug, E.J.; Yen, J.: Generalized coordinate partitioning methods for numerical integration of differential-algebraic equations of dynamics. In: Real-Time Integration Methods for Mechanical System Simulation, pp. 97–114. Springer (1990)

  12. Laulusa, A.; Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2008)

    Article  Google Scholar 

  13. Mani, N.; Haug, E.: Singular value decomposition for dynamic system design sensitivity analysis. Eng. Comput. 1(2), 103–109 (1985)

    Article  Google Scholar 

  14. Mariti, L.; Belfiore, N.; Pennestrì, E.; Valentini, P.: Comparison of solution strategies for multibody dynamics equations. Int. J. Numer. Meth. Eng. 88(7), 637–656 (2011)

    Article  MathSciNet  Google Scholar 

  15. Park, T.W.; Haug, E.J.: A hybrid numerical-integration method for machine dynamic simulation. J. Mech. Transm. Autom. Des. Trans. ASME. 108(2), 211–216 (1986)

    Article  Google Scholar 

  16. Pennestrì, E.; Vita, L.: Strategies for the numerical integration of dae systems in multibody dynamics. Comput. Appl. Eng. Educ. 12(2), 106–116 (2004)

    Article  Google Scholar 

  17. Pkekal, M.; Frkaczek, J.: Comparison of natural complement formulations for multibody dynamics. J. Theor. Appl. Mech. 54, 1391–1404 (2016)

    Article  Google Scholar 

  18. Rabier, P.J.; Rheinboldt, W.C.: A General Existence and Uniqueness Theorem for Implicit Differential-algebraic Equations. Pittsburgh Univ PA Inst for Computational Mathematics and Applications, Technical Report (1990)

  19. Rabier, P.J.; Rheinboldt, W.C.: A geometric treatment of implicit differential-algebraic equations. J. Differ. Equ. 109(1), 110–146 (1994)

    Article  MathSciNet  Google Scholar 

  20. Rabier, P.J.; Rheinboldt, W.C.: On the numerical solution of the euler-lagrange equations. SIAM J. Numer. Anal. 32(1), 318–329 (1995)

    Article  MathSciNet  Google Scholar 

  21. Shabana, A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2020)

    Book  Google Scholar 

  22. Shabana, A.A.: Computational Dynamics. John Wiley & Sons, New York (2009)

    MATH  Google Scholar 

  23. Singh, R.P.; Likins, P.W.: Constraint elimination in dynamical systems. NASA, Langley Research Center, Computational Methods for Structural Mechanics and Dynamics (1989)

    Google Scholar 

  24. Terze, Z.; Lefeber, D.; Muftić, O.: Null space integration method for constrained multibody systems with no constraint violation. Multibody Sys. Dyn. 6(3), 229–243 (2001)

    Article  Google Scholar 

  25. Wehage, R.A.; Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. Trans. ASME 104(1), 247–255 (1982)

    Google Scholar 

  26. Yoon, S.; Howe, R.M.; Greenwood, D.T.: Geometric elimination of constraint violations in numerical-simulation of lagrangian equations. J. Mech. Des. 116(4), 1058–1064 (1994)

    Article  Google Scholar 

  27. Yu, Q.; Chen, I.M.: A direct violation correction method in numerical simulation of constrained multibody systems. Comput. Mech. 26(1), 52–57 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. U. Dogruer.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflict of interests with respect to the research, authorship and/or publication of this article

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogruer, C.U., Yıldırım, B. Simulation of Planar Mechanism Dynamics with Index-I Formulation and Projection Method. Arab J Sci Eng 47, 9305–9317 (2022). https://doi.org/10.1007/s13369-022-07062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07062-3

Keywords

Navigation