Skip to main content
Log in

A Numerical Optimization Approach for Removal of Astrazon Pink FG from Aqueous Media by Fenton Oxidation

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the treatment of aqueous media containing Astrazon Pink FG (AFG) dye, widely used in the textile industry but with limited studies, was investigated using the Fenton process. The system was numerically optimized as Fe2+: 50 mg/L, H2O2: 50 mg/L, pH 3.75, reaction time: 42.54 min, and initial dye concentration: 100 mg/L based on the principle of low-cost high removal efficiency. The quadratic model with central composite design was reliable, valid, and significant (p < 0.0001) for both system responses Theoretical removal efficiencies under these conditions were determined as 80.5% and 94.11% for chemical oxygen demand (COD) and AFG removal, respectively, and were confirmed experimentally as 81.01% and 94.33% under the same conditions. The performance of the Fenton process under optimized conditions was calculated as 51%, 65%, and 73% for COD, AFG and Methyl Orange removal. Reactive Yellow 86, Acid Orange 7, and Reactive Green 19 were removed as 62.72%, 51.73%, and 39.39%, respectively, from real textile wastewater. The generated sludges (v/v) under optimized conditions for AFG dye solution, binary dye solution and real textile wastewater were 6%, 5% and 7%, respectively. AFG removal best fitted the BMG model (R2 > 0.998). According to the experimental cost estimation based on chemical consumption under optimized conditions, 1 m3 of AFG solution can be treated at $0.26. It was concluded that the Fenton process could be used as a pretreatment for industrial wastewater containing dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Easton, J. R., Waters, B. D., Churchley, J. H., Harrison, J.: Colour in dyehouse effluent. Society of Dyers and Colourists (1995)

  2. Elkady, M.F.; Ibrahim, A.M.; El-Latif, M.M.A.: Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads. Desalination (2011). https://doi.org/10.1016/j.desal.2011.05.063

    Article  Google Scholar 

  3. Ozturk, D.; Sahan, T.; Bayram, T.; Erkus, A.: Application of response surface methodology (RSM) to optimize the adsorption conditions of cationic basic yellow 2 onto pumice samples as a new adsorbent. Fresenius Environ. Bull. 26, 3285–3292 (2017)

    Google Scholar 

  4. Khan, I.; Luo, M.; Guo, L.; Khan, S.; Shah, S.A.; Khan, I.; Khan, A.; Wang, C.; Ai, B.; Zaman, S.: Synthesis of phosphate-bridged g-C3N4/LaFeO3 nanosheets Z-scheme nanocomposites as efficient visible photocatalysts for CO2 reduction and malachite green degradation. Appl. Catal. A Gen. 629, 118418 (2022). https://doi.org/10.1016/j.apcata.2021.118418

    Article  Google Scholar 

  5. Yönten, V.; Sanyürek, N.K.; Kivanç, M.R.: A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Vitis vinifera L. Surf. Interfaces. 20, 100529 (2020). https://doi.org/10.1016/j.surfin.2020.100529

    Article  Google Scholar 

  6. Castro, F.D.; Bassin, J.P.; Alves, T.L.M.; Sant’Anna, G.L.; Dezotti, M.: Reactive Orange 16 dye degradation in anaerobic and aerobic MBBR coupled with ozonation: addressing pathways and performance. Int. J. Environ. Sci. Technol. 18, 1991–2010 (2021). https://doi.org/10.1007/s13762-020-02983-8

    Article  Google Scholar 

  7. Krishnan, J.; Arvind Kishore, A.; Suresh, A.; Madhumeetha, B.; Gnana Prakash, D.: Effect of pH, inoculum dose and initial dye concentration on the removal of azo dye mixture under aerobic conditions. Int. Biodeterior. Biodegrad. 119, 16–27 (2017). https://doi.org/10.1016/j.ibiod.2016.11.024

    Article  Google Scholar 

  8. Daneshvar, N.; Oladegaragoze, A.; Djafarzadeh, N.: Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters. J. Hazard. Mater. (2006). https://doi.org/10.1016/j.jhazmat.2005.08.033

    Article  Google Scholar 

  9. Nery, V. Del; Nardi, I. De; Resources, M.D.-; conservation, undefined; 2007, undefined: Long-term operating performance of a poultry slaughterhouse wastewater treatment plant. Elsevier.

  10. Liu, L.; Chen, Z.; Zhang, J.; Shan, D.; Wu, Y.; Bai, L.; Wang, B.: Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. J. Water Process Eng. 42, 102122 (2021). https://doi.org/10.1016/j.jwpe.2021.102122

    Article  Google Scholar 

  11. Hussain, S.M.; Hussain, T.; Faryad, M.; Ali, Q.; Ali, S.; Rizwan, M.; Hussain, A.I.; Ray, M.B.; Chatha, S.A.S.: Emerging aspects of photo-catalysts (TiO2 & ZnO) doped zeolites and advanced oxidation processes for degradation of azo dyes: a review Curr. Anal. Chem. 17(82), 97 (2020). https://doi.org/10.2174/1573411016999200711143225

    Article  Google Scholar 

  12. Ozturk, D.; Yilmaz, A.E.: Investigation of electrochemical degradation of Basic Red 13 dye in aqueous solutions based on COD removal: numerical optimization approach. Int. J. Environ. Sci. Technol. 17, 3099–3110 (2020). https://doi.org/10.1007/s13762-020-02692-2

    Article  Google Scholar 

  13. Quanfang, L.; Jie, Y.; Cailing, Y.; Minrui, L.: Degradation mechanism of Astrazon Pink FG solution by glow discharge electrolysis. CIESC J. 69, 2664–2671 (2018). https://doi.org/10.11949/j.issn.0438-1157.20171310

    Article  Google Scholar 

  14. Sen Gupta, S.K.: Contact glow discharge electrolysis: its origin, plasma diagnostics and non-faradaic chemical effects. Plasma Sources Sci. Technol. 24, 063001 (2015). https://doi.org/10.1088/0963-0252/24/6/063001

    Article  Google Scholar 

  15. Hasija, V.; Nguyen, V.H.; Kumar, A.; Raizada, P.; Krishnan, V.; Khan, A.A.P.; Singh, P.; Lichtfouse, E.; Wang, C.; Huong, P.T.: Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: a review. J. Hazard. Mater. 413, 125324 (2021). https://doi.org/10.1016/j.jhazmat.2021.125324

    Article  Google Scholar 

  16. Bhat, A.P.; Gogate, P.R.: Degradation of nitrogen-containing hazardous compounds using advanced oxidation processes: A review on aliphatic and aromatic amines, dyes, and pesticides. J. Hazard. Mater. 403, 123657 (2021). https://doi.org/10.1016/j.jhazmat.2020.123657

    Article  Google Scholar 

  17. De León, M.A.; Sergio, M.; Bussi, J.: Iron-pillared clays as catalysts for dye removal by the heterogeneous photo-Fenton technique. React. Kinet. Mech. Catal. 110, 101–117 (2013). https://doi.org/10.1007/s11144-013-0593-y

    Article  Google Scholar 

  18. Ozturk, D.: Fe3O4/Mn3O4/ZnO-rGO hybrid quaternary nano-catalyst for effective treatment of tannery wastewater with the heterogeneous electro-Fenton process: process optimization. Sci. Total Environ. 828, 154473 (2022). https://doi.org/10.1016/j.scitotenv.2022.154473

    Article  Google Scholar 

  19. Sudhaik, A.; Parwaz Khan, A.A.; Raizada, P.; Nguyen, V.-H.; Van Le, Q.; Asiri, A.M.; Singh, P.: Strategies based review on near-infrared light-driven bismuth nanocomposites for environmental pollutants degradation. Chemosphere. 291, 132781 (2021). https://doi.org/10.1016/j.chemosphere.2021.132781

    Article  Google Scholar 

  20. Manea, Y.K.; Khan, A.M.; Wani, A.A.; Saleh, M.A.S.; Qashqoosh, M.T.A.; Shahadat, M.; Rezakazemi, M.: In-grown flower like Al-Li/Th-LDH@CNT nanocomposite for enhanced photocatalytic degradation of MG dye and selective adsorption of Cr (VI). J. Environ. Chem. Eng. 10, 106848 (2022). https://doi.org/10.1016/j.jece.2021.106848

    Article  Google Scholar 

  21. Bhaumik, M.; Maity, A.; Brink, H.G.: Metallic nickel nanoparticles supported polyaniline nanotubes as heterogeneous Fenton-like catalyst for the degradation of brilliant green dye in aqueous solution. J. Colloid Interface Sci. 611, 408–420 (2022). https://doi.org/10.1016/j.jcis.2021.11.181

    Article  Google Scholar 

  22. Mahmud, N.; Benamor, A.; Nasser, M.S.; Ba-Abbad, M.M.; El-Naas, M.H.; Mohammad, A.W.: Effective heterogeneous fenton-like degradation of malachite green dye using the core-shell Fe3O4 @SiO2 nano-catalyst. ChemistrySelect 6, 865–875 (2021). https://doi.org/10.1002/slct.202003937

    Article  Google Scholar 

  23. Modarresi-Motlagh, S.; Bahadori, F.; Ghadiri, M.; Afghan, A.: Enhancing Fenton-like oxidation of crystal violet over Fe/ZSM-5 in a plug flow reactor. React. Kinet. Mech. Catal. 133, 1061–1073 (2021). https://doi.org/10.1007/s11144-021-02001-z

    Article  Google Scholar 

  24. Tabaï, A.; Bechiri, O.; Abbessi, M.: Degradation of organic dye using a new homogeneous Fenton-like system based on hydrogen peroxide and a recyclable Dawson-type heteropolyanion. Int. J. Ind. Chem. 8, 83–89 (2017). https://doi.org/10.1007/s40090-016-0104-x

    Article  Google Scholar 

  25. Modak, J.B.; Bhowal, A.; Datta, S.; Karmakar, S.: Continuous decolorization of dye solution by homogeneous Fenton process in a rotating packed bed reactor. Int. J. Environ. Sci. Technol. 17, 1691–1702 (2020). https://doi.org/10.1007/s13762-019-02548-4

    Article  Google Scholar 

  26. Lalwani, J.; Thatikonda, S.; Challapalli, S.: Varying efficacies of Fenton’s oxidation treatment on pharmaceutical industry effluents of contrasting viscosity profiles. CLEAN Soil, Air, Water 49(3), 2000335 (2021). https://doi.org/10.1002/clen.202000335

    Article  Google Scholar 

  27. Şahan, T.; Öztürk, D.: Investigation of Pb(II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology. Clean Technol. Environ. Policy. 16, 819–831 (2014). https://doi.org/10.1007/s10098-013-0673-8

    Article  Google Scholar 

  28. Mandal, T.; Maity, S.; Dasgupta, D.; Datta, S.: Advanced oxidation process and biotreatment: their roles in combined industrial wastewater treatment. Desalination 250, 87–94 (2010). https://doi.org/10.1016/j.desal.2009.04.012

    Article  Google Scholar 

  29. Eaton, A.: Measuring UV-absorbing organics: a standard method. J. Am. Water Works Assoc. (1995). https://doi.org/10.1002/j.1551-8833.1995.tb06320.x

    Article  Google Scholar 

  30. Ekmekyapar Torun, F.; Cengiz, İ.; Kul, S.: Investigation of olive mill wastewater treatment with advanced oxidation processes. J. Inst. Sci. Technol. 1597–1606 (2020). https://doi.org/10.21597/jist.687345

  31. Talinli, I.; Anderson, G.K.: Interference of hydrogen peroxide on the standard cod test. Water Res. 26, 107–110 (1992). https://doi.org/10.1016/0043-1354(92)90118-N

    Article  Google Scholar 

  32. Benatti, C.T.; Tavares, C.R.G.; Guedes, T.A.: Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology. J. Environ. Manage. 80, 66–74 (2006). https://doi.org/10.1016/j.jenvman.2005.08.014

    Article  Google Scholar 

  33. Hatami, M.; Domairry, G.; Mirzababaei, S.N.: Experimental investigation of preparing and using the H 2 O based nanofluids in the heating process of HVAC system model. Int. J. Hydrogen Energy. 42, 7820–7825 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.104

    Article  Google Scholar 

  34. Ighalo, J.O.; Adeniyi, A.G.; Eletta, O.A.A.; Ojetimi, N.I.; Ajala, O.J.: Evaluation of Luffa cylindrica fibres in a biomass packed bed for the treatment of fish pond effluent before environmental release. Sustain. Water Resour. Manag. 6, 120 (2020). https://doi.org/10.1007/s40899-020-00485-6

    Article  Google Scholar 

  35. Aniyikaiye, T.; Oluseyi, T.; Odiyo, J.; Edokpayi, J.: Physico-chemical analysis of wastewater discharge from selected paint industries in Lagos, Nigeria. Int. J. Environ. Res. Public Health. 16, 1235 (2019). https://doi.org/10.3390/ijerph16071235

    Article  Google Scholar 

  36. APHA Awwa WEF: Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC (2012)

    Google Scholar 

  37. Punzi, M.; Mattiasson, B.; Jonstrup, M.: Treatment of synthetic textile wastewater by homogeneous and heterogeneous photo-Fenton oxidation. J. Photochem. Photobiol. A Chem. 248, 30–35 (2012). https://doi.org/10.1016/j.jphotochem.2012.07.017

    Article  Google Scholar 

  38. Dada, M.; Popoola, P.; Mathe, N.; Pityana, S.; Adeosun, S.: Parametric optimization of laser deposited high entropy alloys using response surface methodology (RSM). Int. J. Adv. Manuf. Technol. 109, 2719–2732 (2020). https://doi.org/10.1007/s00170-020-05781-1

    Article  Google Scholar 

  39. Beldjoudi, S.; Kouachi, K.; Bourouina-Bacha, S.; Bouchene, H.; Deflaoui, O.; Lafaye, G.: Experimental and theoretical investigation of a homogeneous Fenton process for the degradation of an azo dye in batch reactor. React. Kinet. Mech. Catal. 133, 139–155 (2021). https://doi.org/10.1007/s11144-021-01979-w

    Article  Google Scholar 

  40. Öztürk, D.; Şahan, T.: Design and optimization of Cu(II) adsorption conditions from aqueous solutions by low-cost adsorbent pumice with response surface methodology. Polish J. Environ. Stud. 24, 1749–1756 (2015). https://doi.org/10.15244/pjoes/40270

    Article  Google Scholar 

  41. Ozturk, D.; Dagdas, E.; Fil, B.; Bashir, M.J.K.: Central composite modeling for electrochemical degradation of paint manufacturing plant wastewater: one-step/two-response optimization. Environ. Technol. Innov. 21, 101264 (2020). https://doi.org/10.1016/j.eti.2020.101264

    Article  Google Scholar 

  42. Kıvanç, M.R.; Yönten, V.: A statistical optimization of methylene blue removal from aqueous solutions by Agaricus Campestris using multi-step experimental design with response surface methodology: Isotherm, kinetic and thermodynamic studies. Surf. Interfaces. 18, 100414 (2020). https://doi.org/10.1016/j.surfin.2019.100414

    Article  Google Scholar 

  43. Karimi, B.; Rokhzadi, A.; Rahimi, A.R.: RSM modeling of nitrogen use efficiency, biomass and essential oil of Salvia officinalis L. as affected by fertilization and plant density. J. Plant Nutr. 44, 1067–1084 (2021). https://doi.org/10.1080/01904167.2021.1871756

    Article  Google Scholar 

  44. Islam, A.; Chauhan, A.; Javed, H.; Rais, S.; Ahmad, I.: Magnetic carbon nanotubes-silica binary composite for effective Pb (II) sequestration from industrial effluents: multivariate process optimization. CLEAN Soil, Air, Water 49(8), 2000401 (2021). https://doi.org/10.1002/clen.202000401

    Article  Google Scholar 

  45. Sridhar, R.; Sivakumar, V.; Thirugnanasambandham, K.: Response surface modeling and optimization of upflow anaerobic sludge blanket reactor process parameters for the treatment of bagasse based pulp and paper industry wastewater. Desalin. Water Treat. 1–12 (2015). https://doi.org/10.1080/19443994.2014.999712

  46. Radhwan, H.; Shayfull, Z.; Farizuan, M.R.; Effendi, M.S.M.; Irfan, A.R.: Optimization parameter effects on the quality surface finish of the three-dimensional printing (3D-printing) fused deposition modeling (FDM) using RSM. Presented at the (2019)

  47. Bhattacharya, S.S.; Banerjee, R.: Laccase mediated biodegradation of 2,4-dichlorophenol using response surface methodology. Chemosphere (2008). https://doi.org/10.1016/j.chemosphere.2008.05.005

    Article  Google Scholar 

  48. Barahimi, V.; Mehrabani-Zeinabad, A.; Rahmati, M.; Ghafaripoor, M.: Synthesis, characterization, and evaluations of Cu-doped TiO2/Bi2O3 nanocomposite for Direct red 16 azo dye decolorization under visible light irradiation. Desalin. WATER Treat. 202, 450–461 (2020). https://doi.org/10.5004/dwt.2020.26165

    Article  Google Scholar 

  49. Manmai, N.; Unpaprom, Y.; Ramaraj, R.: Bioethanol production from sunflower stalk: application of chemical and biological pretreatments by response surface methodology (RSM). Biomass Convers. Biorefinery. 11, 1759–1773 (2021). https://doi.org/10.1007/s13399-020-00602-7

    Article  Google Scholar 

  50. Prasath, K.M.; Pradheep, T.; Suresh, S.: Application of Taguchi and response surface methodology (RSM) in steel turning process to improve surface roughness and material removal rate. Mater. Today Proc. 5, 24622–24631 (2018). https://doi.org/10.1016/j.matpr.2018.10.260

    Article  Google Scholar 

  51. Youssef, N.A.; Shaban, S.A.; Ibrahim, F.A.; Mahmoud, A.S.: Degradation of methyl orange using Fenton catalytic reaction. Egypt. J. Pet. 25, 317–321 (2016). https://doi.org/10.1016/j.ejpe.2015.07.017

    Article  Google Scholar 

  52. Hsueh, C.L.; Huang, Y.H.; Wang, C.C.; Chen, C.Y.: Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere 58, 1409–1414 (2005). https://doi.org/10.1016/j.chemosphere.2004.09.091

    Article  Google Scholar 

  53. Sun, S.-P.; Li, C.-J.; Sun, J.-H.; Shi, S.-H.; Fan, M.-H.; Zhou, Q.: Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. J. Hazard. Mater. 161, 1052–1057 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.080

    Article  Google Scholar 

  54. Kwon, B.G.; Lee, D.S.; Kang, N.; Yoon, J.: Characteristics of p-chlorophenol oxidation by Fenton’s reagent. Water Res. 33, 2110–2118 (1999). https://doi.org/10.1016/S0043-1354(98)00428-X

    Article  Google Scholar 

  55. Toprak, D.; Sener, S. (2021) Sentetik tekstil atıksuyunun fenton ve ultrases-fenton oksidasyon yöntemleri ile renk ve Koi gideriminin araştırılması. Ömer Halisdemir Üniversitesi Mühendislik Bilim. Derg https://doi.org/10.28948/ngumuh.749438

  56. Bayhan, Y.K.; Değermenci, G.D.: Kozmetik atık sularından fenton prosesiyle organik madde gideriminin ve kinetiğinin incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Derg https://doi.org/10.17341/gazimmfd.300609

  57. Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L.: Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes—a review. Chemosphere 174, 665–688 (2017). https://doi.org/10.1016/j.chemosphere.2017.02.019

    Article  Google Scholar 

  58. Güneş, E.; Cihan, M.T.: COD and color removal from wastewaters: optimization of Fenton process. Pamukkale Univ. J. Eng. Sci. 21, 239–247 (2015). https://doi.org/10.5505/pajes.2014.37928

    Article  Google Scholar 

  59. Alalm, M.G.; Tawfik, A.; Ookawara, S.: Degradation of four pharmaceuticals by solar photo-Fenton process: kinetics and costs estimation. J. Environ. Chem. Eng. 3, 46–51 (2015). https://doi.org/10.1016/j.jece.2014.12.009

    Article  Google Scholar 

  60. Zhang, H.; Fu, H.; Zhang, D.: Degradation of C.I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process. J. Hazard. Mater. 172, 654–660 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.047

    Article  Google Scholar 

  61. Murugananthan, M.; Yoshihara, S.; Rakuma, T.; Shirakashi, T.: Mineralization of bisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD) electrode. J. Hazard. Mater. 154, 213–220 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.011

    Article  Google Scholar 

  62. Nguyen, L.H.; Van, H.T.; Ngo, Q.N.; Thai, V.N.; Hoang, V.H.; Hai, N.T.T.: Improving Fenton-like oxidation of Rhodamin B using a new catalyst based on magnetic/iron-containing waste slag composite. Environ. Technol. Innov. 23, 101582 (2021). https://doi.org/10.1016/j.eti.2021.101582

    Article  Google Scholar 

  63. Rodrigues, C.S.D.; Madeira, L.M.; Boaventura, R.A.R.: Optimization of the azo dye Procion Red H-EXL degradation by Fenton’s reagent using experimental design. J. Hazard. Mater. 164, 987–994 (2009). https://doi.org/10.1016/J.JHAZMAT.2008.08.109

    Article  Google Scholar 

  64. Shi, X.; Tian, A.; You, J.; Yang, H.; Wang, Y.; Xue, X.: Degradation of organic dyes by a new heterogeneous Fenton reagent - Fe2GeS4 nanoparticle. J. Hazard. Mater. 353, 182–189 (2018). https://doi.org/10.1016/j.jhazmat.2018.04.018

    Article  Google Scholar 

  65. Öztürk, D.: Degradation of Reactive Orange 16 dye with heterogeneous Fenton Process using magnetic nano-sized clay as catalyst: a central composite optimization study. Hacettepe J. Biol. Chem. 50, 113–129 (2021). https://doi.org/10.15671/hjbc.937728

    Article  Google Scholar 

  66. Giwa, A.-R.A.; Bello, I.A.; Olabintan, A.B.; Bello, O.S.; Saleh, T.A.: Kinetic and thermodynamic studies of fenton oxidative decolorization of methylene blue. Heliyon. 6, e04454 (2020). https://doi.org/10.1016/j.heliyon.2020.e04454

    Article  Google Scholar 

  67. Suhan, M.B.K.; Mahtab, S.M.T.; Aziz, W.; Akter, S.; Islam, M.S.: Sudan black B dye degradation in aqueous solution by Fenton oxidation process: kinetics and cost analysis. Case Stud. Chem. Environ. Eng. 4, 100126 (2021). https://doi.org/10.1016/J.CSCEE.2021.100126

    Article  Google Scholar 

  68. Alıasgharlou, N.; Bahram, M.; Zolfagharı, P.; Mohsenı, N.: Modeling and optimization of simultaneous degradation of rhodamine B and acid red 14 binary solution by homogeneous Fenton reaction: a chemometrics approach. Turkish J. Chem. 44, 987–1001 (2020). https://doi.org/10.3906/kim-2002-59

    Article  Google Scholar 

  69. Behnajady, M.A.; Modirshahla, N.; Ghanbary, F.: A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process. J. Hazard. Mater. 148, 98–102 (2007). https://doi.org/10.1016/j.jhazmat.2007.02.003

    Article  Google Scholar 

  70. Hashemian, S.: Fenton-like oxidation of malachite green solutions: kinetic and thermodynamic study. J. Chem. 2013, 1–7 (2013). https://doi.org/10.1155/2013/809318

    Article  Google Scholar 

  71. Sidney Santana, C.; Nicodemos Ramos, M.D.; Vieira Velloso, C.C.; Aguiar, A.: Kinetic Evaluation of dye decolorization by fenton processes in the presence of 3-hydroxyanthranilic acid. Int. J. Environ. Res. Public Health. 16, 1602 (2019). https://doi.org/10.3390/ijerph16091602

    Article  Google Scholar 

  72. Lima, J.P.P.; Tabelini, C.H.B.; Ramos, M.D.N.; Aguiar, A.: Kinetic evaluation of bismarck brown y azo dye oxidation by Fenton processes in the presence of aromatic mediators. Water, Air, Soil Pollut. 232, 321 (2021). https://doi.org/10.1007/s11270-021-05258-1

    Article  Google Scholar 

  73. Jafari, S.; Dehghani, M.; Nasirizadeh, N.; Akrami, H.R.: Voltammetric determination of Basic Red 13 during its sonoelectrocatalytic degradation. Microchim. Acta. 184, 4459–4468 (2017). https://doi.org/10.1007/s00604-017-2482-y

    Article  Google Scholar 

  74. Beldjoudi, S.; Kouachi, K.; Bourouina-Bacha, S.; Lafaye, G.; Soualah, A.: Kinetic study of methyl orange decolorization by the Fenton process based on fractional factorial design. React. Kinet. Mech. Catal. 130, 1123–1140 (2020). https://doi.org/10.1007/s11144-020-01803-x

    Article  Google Scholar 

  75. da Santana, R.M.; Napoleão, D.C.; Duarte, M.M.M.B.: Treatment of textile matrices using Fenton processes influence of operational parameters on degradation kinetics, ecotoxicity evaluation and application in real wastewater. J. Environ. Sci. Heal. Part A. 56, 1165–1178 (2021). https://doi.org/10.1080/10934529.2021.1965816

    Article  Google Scholar 

  76. Babuponnusami, A.; Muthukumar, K.: Degradation of phenol in aqueous solution by Fenton, Sono-fenton and Sono-photo-fenton methods. CLEAN Soil, Air, Water. 39, 142–147 (2011). https://doi.org/10.1002/clen.201000072

    Article  Google Scholar 

  77. Li, H.; Li, Y.; Xiang, L.; Huang, Q.; Qiu, J.; Zhang, H.; Sivaiah, M.V.; Baron, F.; Barrault, J.; Petit, S.; Valange, S.: Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation. J. Hazard. Mater. 287, 32–41 (2015). https://doi.org/10.1016/j.jhazmat.2015.01.023

    Article  Google Scholar 

  78. Zhang, Q.; Wang, C.; Lei, Y.: Fenton’s oxidation kinetics, pathway, and toxicity evaluation of diethyl phthalate in aqueous solution. J. Adv. Oxid. Technol. (2016). https://doi.org/10.1515/jaots-2016-0117

    Article  Google Scholar 

  79. Ertugay, N.; Acar, F.N.: Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arab. J. Chem. 10, S1158–S1163 (2017). https://doi.org/10.1016/j.arabjc.2013.02.009

    Article  Google Scholar 

  80. Khan, N.-U.-H.; Bhatti, H.N.; Iqbal, M.; Nazir, A.: Decolorization of Basic Turquise Blue X-GB and Basic Blue X-GRRL by the Fenton’s Process and its Kinetics. Zeitschrift für Phys. Chemie. 233, 361–373 (2019). https://doi.org/10.1515/zpch-2018-1194

    Article  Google Scholar 

  81. Tong, S.; Shen, J.; Jiang, X.; Li, J.; Sun, X.; Xu, Z.; Chen, D.: Recycle of Fenton sludge through one-step synthesis of aminated magnetic hydrochar for Pb2+ removal from wastewater. J. Hazard. Mater. 406, 124581 (2021). https://doi.org/10.1016/j.jhazmat.2020.124581

    Article  Google Scholar 

  82. Gao, L.; Cao, Y.; Wang, L.; Li, S.: A review on sustainable reuse applications of Fenton sludge during wastewater treatment. Front. Environ. Sci. Eng. 16, 77 (2022). https://doi.org/10.1007/s11783-021-1511-6

    Article  Google Scholar 

  83. Zhang, H.; Xue, G.; Chen, H.; Li, X.: Hydrothermal synthesizing sludge-based magnetite catalyst from ferric sludge and biosolids: Formation mechanism and catalytic performance. Sci. Total Environ. 697, 133986 (2019). https://doi.org/10.1016/J.SCITOTENV.2019.133986

    Article  Google Scholar 

  84. Wang, G.; Tang, K.; Jiang, Y.; Andersen, H.R.; Zhang, Y.: Regeneration of Fe(II) from Fenton-derived ferric sludge using a novel biocathode. Bioresour. Technol. 318, 124195 (2020). https://doi.org/10.1016/J.BIORTECH.2020.124195

    Article  Google Scholar 

  85. Zhang, H.; Liu, J.; Ou, C.; Shen, J.; Yu, H.; Jiao, Z.; Han, W.; Sun, X.; Li, J.; Wang, L.: Reuse of Fenton sludge as an iron source for NiFe2O4 synthesis and its application in the Fenton-based process. J. Environ. Sci. 53, 1–8 (2017). https://doi.org/10.1016/J.JES.2016.05.010

    Article  Google Scholar 

  86. Bayram, T.; Bucak, S.; Ozturk, D.: BR13 dye removal using sodium dodecyl sulfate modified montmorillonite: equilibrium, thermodynamic, kinetic and reusability studies. Chem. Eng. Process. Process Intensif. 158, 108186 (2020). https://doi.org/10.1016/j.cep.2020.108186

    Article  Google Scholar 

  87. Katsumata, H.; Koike, S.; Kaneco, S.; Suzuki, T.; Ohta, K.: Degradation of Reactive Yellow 86 with photo-Fenton process driven by solar light. J. Environ. Sci. 22, 1455–1461 (2010). https://doi.org/10.1016/S1001-0742(09)60275-8

    Article  Google Scholar 

  88. Liu, H.; Li, G.; Qu, J.; Liu, H.: Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound. J. Hazard. Mater. 144, 180–186 (2007). https://doi.org/10.1016/J.JHAZMAT.2006.10.009

    Article  Google Scholar 

  89. Hsueh, C.C.; Chen, B.Y.; Yen, C.Y.: Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila. J. Hazard. Mater. 167, 995–1001 (2009). https://doi.org/10.1016/J.JHAZMAT.2009.01.077

    Article  Google Scholar 

  90. Singh, S.K.; Tang, W.Z.; Tachiev, G.: Fenton treatment of landfill leachate under different COD loading factors. Waste Manag. 33, 2116–2122 (2013). https://doi.org/10.1016/j.wasman.2013.06.019

    Article  Google Scholar 

  91. Asghar, A.; Abdul Raman, A.A.; Daud, W.M.A.W.: Sequential optimization for minimizing material cost and treatment time of fenton oxidation for textile wastewater treatment. Chem. Eng. Commun. 204, 873–883 (2017). https://doi.org/10.1080/00986445.2017.1320283

    Article  Google Scholar 

  92. Pliego, G.; Zazo, J.A.; Casas, J.A.; Rodriguez, J.J.: Case study of the application of Fenton process to highly polluted wastewater from power plant. J. Hazard. Mater. 252–253, 180–185 (2013). https://doi.org/10.1016/j.jhazmat.2013.02.042

    Article  Google Scholar 

Download references

Acknowledgements

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

DO contributed to conceptualization, investigation, experimentation, methodology, software using, data analysis, supervision, validation, visualization, writing–original draft, writing–review and editing, and AO contributed to investigation, experimentation, methodology, data analysis, validation, writing–original draft, writing–review and editing.

Corresponding author

Correspondence to Dilara Ozturk.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 728 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozguven, A., Ozturk, D. A Numerical Optimization Approach for Removal of Astrazon Pink FG from Aqueous Media by Fenton Oxidation. Arab J Sci Eng 48, 8431–8452 (2023). https://doi.org/10.1007/s13369-022-06996-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06996-y

Keywords

Navigation