Skip to main content
Log in

Comparing Machine Learning Models with Witczak NCHRP 1-40D Model for Hot-Mix Asphalt Dynamic Modulus Prediction

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The design and construction of a structurally and functionally stable pavement are pivotal for sustainable mobility. The need for a structurally stable and flexible pavement involves the assessment of the various engineering properties of asphalt. The use of the Witczak model is useful in assisting pavement designers with limited laboratory tests in the estimation of asphalt concrete dynamic modulus (E*). This is because the existing regression and artificial neural networks (ANN) model training using Witczak model input parameter has not exceeded 91% correlation between the measured and predicted E* and the huge error which could constitute a significant increase in pavement cost. In this research, five machine learning models were used to model E* and Log E*. To achieve the aim of this research, Witczak Model was adopted. Witczak model was used to input the obtained parameters and the database containing 7400 data points. The performance of the machine learning models was compared with the Witczak model. A global sensitivity analysis (GSA) was carried out to ascertain the model parameter importance to the output variance using the easyGSA MATLAB tool. The results of the research revealed that the Gaussian process regression (GPR) have a high predictive capability, with the highest coefficient of determination (R2) of 0.95 and 0.93 for E* and Log E*, respectively. The results strongly suggest that the GPR model could be used as an alternative to Witczak regression and ANN models. The GSA results showed that the gradation, volumetric properties and the phase angle have a significant effect on the E* prediction where the volumetric properties and cumulative weight retained on the 1.9 cm sieve induced the maximum effect on the prediction of Log E*. The outcome of this research will be of immense benefit to transportation engineers, highway engineers, researchers and construction workers on the use of this model for the prediction of the dynamic modulus of flexible pavement for sustainable mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data described in the research are openly available in public repository at http://onlinepubs.trb.org/onlinepubs/nchrp/CRP-DVD-46.iso

References

  1. Santos, J.; Ferreira, A.: Pavement design optimization considering costs and preventive interventions. J. Transp. Eng. 138, 911–923 (2012). https://doi.org/10.1061/(ASCE)TE.1943-5436.0000390

    Article  Google Scholar 

  2. El-Badawy, S.; Abd El-Hakim, R.; Awed, A.: Comparing artificial neural networks with regression models for hot-mix asphalt dynamic modulus prediction. J. Mater. Civ. Eng. 30, 04018128 (2018). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002282

    Article  Google Scholar 

  3. Khattab, A.M.; El-Badawy, S.M.; Al Hazmi, A.A.; Elmwafi, M.: Evaluation of Witczak E* predictive models for the implementation of AASHTOWare-pavement ME design in the Kingdom of Saudi Arabia. Constr. Build. Mater. 64, 360–369 (2014). https://doi.org/10.1016/j.conbuildmat.2014.04.066

    Article  Google Scholar 

  4. Bari, J.; Witczak, M.W.; You, Z.; Solamanian, M.; Huang, B.; Mohseni, A.; Dukatz, E.; Chehab, G.; Williams, C.; Christiansen, D.: Development of a new revised version of the Witczak E Predictive Model for hot mix asphalt mixtures. In: Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions (2006).

  5. Arefin, M.S.; Quasem, T.; Nazzal, M.; Dessouky, S.; Abbas, A.R.: Accuracy of mepdg dynamic modulus predictions for short-term and long-term aged asphalt mixtures. J. Transp. Eng. Part B Pavements. 145, 04019025 (2019). https://doi.org/10.1061/JPEODX.0000125

    Article  Google Scholar 

  6. Daneshvar, D.; Behnood, A.: Estimation of the dynamic modulus of asphalt concretes using random forests algorithm. Int. J. Pavement Eng. 1–11 (2020). https://doi.org/10.1080/10298436.2020.1741587.

  7. Ghasemi, P.; Aslani, M.; Rollins, D.K.; Williams, R.C.: Principal Component neural networks for modeling, prediction, and optimization of hot mix asphalt dynamics modulus. Infrastructures. 4, 53 (2019). https://doi.org/10.3390/infrastructures4030053

    Article  Google Scholar 

  8. Yousefdoost, S.; Vuong, B.-Q.; Rickards, I.; Armstrong, P.; Sullivan, B.: Evaluation of dynamic modulus predictive models for typical Australian asphalt mixes (2013).

  9. El-Badawy, S.; El-Hakim, R.A.; Awed, A.: Comparing artificial neural networks with regression models for hot-mix asphalt dynamic modulus prediction. J. Mater. Civ. Eng. (2018). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002282

    Article  Google Scholar 

  10. Xi-zhao, W.; Qing-yan, S.; Qing, M.; Jun-hai, Z.: Architecture selection for networks trained with extreme learning machine using localized generalization error model. Neurocomputing 102, 3–9 (2013). https://doi.org/10.1016/J.NEUCOM.2011.12.053

    Article  Google Scholar 

  11. An Introduction to Modelling Methodology. Model. Methodol. Physiol. Med. (2001). https://doi.org/10.1016/B978-012160245-1/50002-7.

  12. Zhang, C.; Nateghinia, E.; Miranda-Moreno, L.F.; Sun, L.: Pavement distress detection using convolutional neural network (CNN): a case study in Montreal. Canada. Int. J. Transp. Sci. Technol. (2021). https://doi.org/10.1016/J.IJTST.2021.04.008

    Article  Google Scholar 

  13. Uwanuakwa, I.D.; Ali, S.I.A.; Hasan, M.R.M.; Akpinar, P.; Sani, A.; Shariff, K.A.: Artificial Intelligence prediction of rutting and fatigue parameters in modified asphalt binders. Appl. Sci. 10, 7764 (2020). https://doi.org/10.3390/APP10217764

    Article  Google Scholar 

  14. Bari, J.; Witczak, M.W.: Development of a new revised version of the Witczak E* predictive model for hot mix asphalt mixtures. Electron. J. Asph. Paving Technol. 75, 381–423 (2006)

    Google Scholar 

  15. Shen, Y.; Xu, F.; Zhu, W.; Hu, H.; Chen, T.; Li, Q.: Multiclassifier fusion based on radiomics features for the prediction of benign and malignant primary pulmonary solid nodules. Ann. Transl. Med. 8, 171–171 (2020). https://doi.org/10.21037/atm.2020.01.135.

  16. Zhu, B.; Feng, Y.; Gong, D.; Jiang, S.; Zhao, L.; Cui, N.: Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput. Electron. Agric. 173, 105430 (2020). https://doi.org/10.1016/j.compag.2020.105430

    Article  Google Scholar 

  17. Zhang, W.; Phoon, K.K.: Editorial for Advances and applications of deep learning and soft computing in geotechnical underground engineering. J. Rock Mech. Geotech. Eng. (2022). https://doi.org/10.1016/J.JRMGE.2022.01.001

    Article  Google Scholar 

  18. Wan, X.; Li, X.; Wang, X.; Yi, X.; Zhao, Y.; He, X.; Wu, R.; Huang, M.: Water quality prediction model using Gaussian process regression based on deep learning for carbon neutrality in papermaking wastewater treatment system. Environ. Res. 211, 112942 (2022). https://doi.org/10.1016/J.ENVRES.2022.112942

    Article  Google Scholar 

  19. Zhang, W.; Zhang, Y.; Gu, X.; Wu, C.; Han, L.: Machine Learning and Applications. Appl. Soft Comput. Mach. Learn. Deep Learn. Optim. Geoengin. Geosci. 21–39 (2022). https://doi.org/10.1007/978-981-16-6835-7_3.

  20. Wu, C.L.; Chau, K.W.: Prediction of rainfall time series using modular soft computingmethods. Eng. Appl. Artif. Intell. 26, 997–1007 (2013). https://doi.org/10.1016/j.engappai.2012.05.023

    Article  Google Scholar 

  21. Cheng, C.L.; Shalabh, Garg, G.: Coefficient of determination for multiple measurement error models. J. Multivar. Anal. 126, 137–152 (2014). https://doi.org/10.1016/J.JMVA.2014.01.006

  22. Homma, T.; Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996). https://doi.org/10.1016/0951-8320(96)00002-6

    Article  Google Scholar 

  23. Saltelli, A.: Sensitivity analysis for importance assessment. Risk Anal. 22, 579–590 (2002). https://doi.org/10.1111/0272-4332.00040

    Article  Google Scholar 

  24. Saltelli, A.; Aleksankina, K.; Becker, W.; Fennell, P.; Ferretti, F.; Holst, N.; Li, S.; Wu, Q.: Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environ. Model. Softw. 114, 29–39 (2019). https://doi.org/10.1016/j.envsoft.2019.01.012

    Article  Google Scholar 

  25. Al, R.: easyGSA - framework for efficient global sensitivity analysis using surrogate models. (2019). https://doi.org/10.17632/MCJ4J3RDX9.2.

  26. Al, R.; Behera, C.R.; Zubov, A.; Gernaey, K.V.; Sin, G.: Meta-modeling based efficient global sensitivity analysis for wastewater treatment plants – An application to the BSM2 model. Comput. Chem. Eng. 127, 233–246 (2019). https://doi.org/10.1016/j.compchemeng.2019.05.015

    Article  Google Scholar 

  27. Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S.: Global Sensitivity Analysis. The Primer. John Wiley and Sons, Chichester, UK (2008). https://doi.org/10.1002/9780470725184.

  28. Cho, Y.H.; Park, D.W.; Hwang, S.: Do: a predictive equation for dynamic modulus of asphalt mixtures used in Korea. Constr. Build. Mater. 24, 513–519 (2010). https://doi.org/10.1016/j.conbuildmat.2009.10.008

    Article  Google Scholar 

  29. Li, X.; Youtcheff, J.: Practical method to determine the effect of air voids on the dynamic modulus of asphalt mixture. Transp. Res. Rec. 2672, 462–470 (2018). https://doi.org/10.1177/0361198118787389

    Article  Google Scholar 

  30. Birgisson, B.; Roque, R.: Evaluation of the gradation effect on the dynamic modulus. Transp. Res. Rec. J. Transp. Res. Board. 1929, 193–199 (2005). https://doi.org/10.1177/0361198105192900123

    Article  Google Scholar 

Download references

Acknowledgements

This research received no funding. We thank the National Cooperative Highway Research Program (NCHRP) Project 1-40D for the data used in the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikenna D. Uwanuakwa.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uwanuakwa, I.D., Busari, A., Ali, S.I.A. et al. Comparing Machine Learning Models with Witczak NCHRP 1-40D Model for Hot-Mix Asphalt Dynamic Modulus Prediction. Arab J Sci Eng 47, 13579–13591 (2022). https://doi.org/10.1007/s13369-022-06935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06935-x

Keywords

Navigation