Skip to main content
Log in

Study on the Mechanical Properties and Microstructure of Fiber-Reinforced Concrete Subjected to Sulfate Erosion

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

It is of great significance to overall evaluate the degree and process of sulfate erosion on concrete, especially for the fiber-reinforced concrete (FRC). This paper investigated the effect of steel fiber (SF), polypropylene fiber (PPF), and basalt fiber (BF) on the mechanical properties and microstructure of concrete exposed to sulfate erosion. The compressive strength, mass change rate, and scanning electron microscope (SEM) images of the steel fiber-reinforced concrete (SFRC), polypropylene fiber-reinforced concrete (PPFRC), and basalt fiber-reinforced concrete (BFRC) were obtained. The results revealed that the sodium solution concentration affected the compressive strength and relative elasticity modulus of concrete, the compressive strength and relative elasticity modulus diminished with the erosion concentration increased. Further, for the FRC, there was an optimum fiber content for the compressive strength of concretes to resist sulfate erosion, whereby the optimum fiber contents for the SFRC, PPFRC, and BFRC were 3.0%, 1.0‰ and 0.5‰, respectively. Moreover, the mass change rates for the PPFRC were lower than those for the BFRC, while being higher than those for the SFRC. The mass change rate of PPFRC exposed to sulfate erosion concentrations of 3%, 5% and 7% could be divided into three stages, i.e., decreasing stage with the mass change rate below zero, increasing stage with the pores of concretes filling by some expansion products, and declining stage with some mortar peeling out. Additionally, the number and shape of expansion products increased with the erosion age and sulfate solution concentration, together with the depth and width of cracks in concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Uygunoğlu, T.: Investigation of microstructure and flexural behavior of steel-fiber reinforced concrete. Mater. Struct. 41(8), 1441–1449 (2008)

    Article  Google Scholar 

  2. Yin, S.; Tuladhar, R.; Shi, F.; Combe, M.; Collister, T.; Sivakugan, N.: Use of macro plastic fibres in concrete: a review. Constr. Build. Mater. 93, 180–188 (2015)

    Article  Google Scholar 

  3. Pakravan, H.R.; Ozbakkaloglu, T.: Synthetic fibers for cementitious composites: a critical and in-depth review of recent advances. Constr. Build. Mater. 207, 491–518 (2019)

    Article  Google Scholar 

  4. Wei, B.; Cao, H.; Song, S.: Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater. Des. 31(9), 4244–4250 (2010)

    Article  Google Scholar 

  5. Wei, B.; Cao, H.; Song, S.: Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater. Corros. Sci. 53(1), 426–431 (2011)

    Article  Google Scholar 

  6. Sun, J.; Ding, Z.; Li, X.; Wang, Z.: Bond behavior between BFRP bar and basalt fiber reinforced seawater sea-sand recycled aggregate concrete. Constr. Build. Mater. 285, 122951 (2021)

    Article  Google Scholar 

  7. Fiore, V.; Di Bella, G.; Valenza, A.: Glass–basalt/epoxy hybrid composites for marine applications. Mater. Des. 32(4), 2091–2099 (2011)

    Article  Google Scholar 

  8. Sim, J.; Park, C.; Moon, D.Y.: Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. B Eng. 36(6–7), 504–512 (2005)

    Article  Google Scholar 

  9. Borhan, T.M.: Properties of glass concrete reinforced with short basalt fibre. Mater. Des. 42, 265–271 (2012)

    Article  Google Scholar 

  10. Niu, D.; Su, L.; Luo, Y.; Huang, D.; Luo, D.: Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete. Constr. Build. Mater. 237, 117628 (2020)

    Article  Google Scholar 

  11. Fallah, S.; Nematzadeh, M.: Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Constr. Build. Mater. 132, 170–187 (2017)

    Article  Google Scholar 

  12. Cao, S.; Yilmaz, E.; Song, W.: Fiber type effect on strength, toughness and microstructure of early age cemented tailings backfill. Constr. Build. Mater. 223, 44–54 (2019)

    Article  Google Scholar 

  13. Katkhuda, H.; Shatarat, N.: Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment. Constr. Build. Mater. 140, 328–335 (2017)

    Article  Google Scholar 

  14. Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T.: High-performance fiber-reinforced concrete: a review. J. Mater. Sci. 51(14), 6517–6551 (2016)

    Article  Google Scholar 

  15. Song, P.S.; Hwang, S.: Mechanical properties of high-strength steel fiber-reinforced concrete. Constr. Build. Mater. 18(9), 669–673 (2004)

    Article  Google Scholar 

  16. Köksal, F.; Altun, F.; Yiğit, İ; Şahin, Y.: Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Constr. Build. Mater. 22(8), 1874–1880 (2008)

    Article  Google Scholar 

  17. Tassew, S.T.; Lubell, A.S.: Mechanical properties of glass fiber reinforced ceramic concrete. Constr. Build. Mater. 51, 215–224 (2014)

    Article  Google Scholar 

  18. Al-Ameeri, A.: The effect of steel fiber on some mechanical properties of self-compacting concrete. Am. J. Civ. Eng. 1(3), 102 (2013)

    Article  Google Scholar 

  19. Giner, V.T.; Baeza, F.J.; Ivorra, S.; Zornoza, E.; Galao, Ó.: Effect of steel and carbon fiber additions on the dynamic properties of concrete containing silica fume. Mater. Des. 34, 332–339 (2012)

    Article  Google Scholar 

  20. Hsu, L.S.; Hsu, C.T.T.: Stress–strain behavior of steel-fiber high-strength concrete under compression. ACI Struct. J. 91(4), 448–457 (1994)

    Google Scholar 

  21. Libre, N.A.; Shekarchi, M.; Mahoutian, M.; Soroushian, P.: Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Constr. Build. Mater. 25(5), 2458–2464 (2011)

    Article  Google Scholar 

  22. Bissonnette, B.; Pigeon, M.: Tensile creep at early ages of ordinary, silica fume and fiber reinforced concretes. Cem. Concr. Res. 25(5), 1075–1085 (1995)

    Article  Google Scholar 

  23. García-Taengua, E.; Arango, S.; Martí-Vargas, J.R.; Serna, P.: Flexural creep of steel fiber reinforced concrete in the cracked state. Constr. Build. Mater. 65, 321–329 (2014)

    Article  Google Scholar 

  24. Cheung, A.K.F.; Leung, C.K.Y.: Shrinkage reduction of high strength fiber reinforced cementitious composites (HSFRCC) with various water-to-binder ratios. Cement Concr. Compos. 33(6), 661–667 (2011)

    Article  Google Scholar 

  25. Güneyisi, E.; Gesoğlu, M.; Mohamadameen, A.; Alzeebaree, R.; Algın, Z.; Mermerdaş, K.: Enhancement of shrinkage behavior of lightweight aggregate concretes by shrinkage reducing admixture and fiber reinforcement. Constr. Build. Mater. 54, 91–98 (2014)

    Article  Google Scholar 

  26. Yuan, Z.; Jia, Y.: Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: An experimental study. Constr. Build. Mater. 266, 121048 (2021)

    Article  Google Scholar 

  27. Dong, J.F.; Wang, Q.Y.; Guan, Z.W.: Material properties of basalt fibre reinforced concrete made with recycled earthquake waste. Constr. Build. Mater. 130, 241–251 (2017)

    Article  Google Scholar 

  28. Wan, X.; Gong, F.; Qu, M.; Qiu, E.; Zhong, C.: Experimental study of the salt transfer in a cold sodium sulfate soil. KSCE J. Civ. Eng. 23(4), 1573–1585 (2019)

    Article  Google Scholar 

  29. Wan, X.; Hu, Q.; Liao, M.: Salt crystallization in cold sulfate saline soil. Cold Reg. Sci. Technol. 137, 36–47 (2017)

    Article  Google Scholar 

  30. Yang, J.S.: Development and prospect of the research on salt affected soils in China. Acta Pedol. Sin. 45(5), 837–845 (2008)

    Google Scholar 

  31. Yu, C.; Sun, W.; Scrivener, K.: Degradation mechanism of slag blended mortars immersed in sodium sulfate solution. Cem. Concr. Res. 72, 37–47 (2015)

    Article  Google Scholar 

  32. Al-Dulaijan, S.U.: Sulfate resistance of plain and blended cements exposed to magnesium sulfate solutions. Constr. Build. Mater. 21(8), 1792–1802 (2007)

    Article  Google Scholar 

  33. Hossack, A.M.; Thomas, M.D.A.: The effect of temperature on the rate of sulfate attack of Portland cement blended mortars in Na2SO4 solution. Cem. Concr. Res. 73, 136–142 (2015)

    Article  Google Scholar 

  34. Liu, Z.; De Schutter, G.; Deng, D.; Yu, Z.: Micro-analysis of the role of interfacial transition zone in “salt weathering” on concrete. Constr. Build. Mater. 24(11), 2052–2059 (2010)

    Article  Google Scholar 

  35. Gao, J.; Yu, Z.; Song, L.; Wang, T.; Wei, S.: Durability of concrete exposed to sulfate attack under flexural loading and drying–wetting cycles. Constr. Build. Mater. 39, 33–38 (2013)

    Article  Google Scholar 

  36. Ehlert, R.A.: Coral concrete at bikini atoll. Concr. Int. 13, 19–24 (1991)

    Google Scholar 

  37. Zhao, K.; Qiao, Y.; Zhang, P.; Bao, J.; Tian, Y.: Experimental and numerical study on chloride transport in cement mortar during drying process. Constr. Build. Mater. 258, 119655 (2020)

    Article  Google Scholar 

  38. Han, S.; Zhong, J.; Yu, Q.; Yan, L.; Ou, J.: Sulfate resistance of eco-friendly and sulfate-resistant concrete using seawater sea-sand and high-ferrite Portland cement. Constr. Build. Mater. 305, 124753 (2021)

    Article  Google Scholar 

  39. Santhanama, M.; Cohenb, M.D.; Olek, J.: Mechanism of sulfate attack: a fresh look: Part 2 Proposed mechanisms. Cem. Concr. Res. 33(3), 341–346 (2003)

    Article  Google Scholar 

  40. Lee, S.T.; Moon, H.Y.; Swamy, R.N.: Sulfate attack and role of silica fume in resisting strength loss. Cem. Concr. Compos. 27(1), 65–76 (2005)

    Article  Google Scholar 

  41. Huang, D.; Niu, D.; Su, L.; Fu, Q.: Chloride diffusion behavior of coral aggregate concrete under drying-wetting cycles. Constr. Build. Mater. 270, 121485 (2021)

    Article  Google Scholar 

  42. Wang, J.; Niu, D.: Influence of freeze–thaw cycles and sulfate corrosion resistance on shotcrete with and without steel fiber. Constr. Build. Mater. 122, 628–636 (2016)

    Article  Google Scholar 

  43. Ben, X.; Jiang, L.; Guo, M.Z.; Meng, Y.; Chen, L.; Jin, W.; Wang, F.: Chloride erosion resistance of calcium format incorporated cement mortar under chloride attack. Constr. Build. Mater. 314, 125611 (2022)

    Article  Google Scholar 

  44. He, R.; Zheng, S.; Gan, V.J.L.; Wang, Z.; Fang, J.; Shao, Y.: Damage mechanism and interfacial transition zone characteristics of concrete under sulfate erosion and dry-wet cycles. Constr. Build. Mater. 255, 119340 (2020)

    Article  Google Scholar 

  45. CS (Chinese Standard) GB/T 50081–2002 standard for test method of mechanical properties on ordinary concrete (in Chinese)

  46. Standard specification for fiber-reinforced concrete and short concrete (ASTM C1116-02). Philadelphia, P. A.: American Society for Testing and Materials (ASTM)

  47. Wee, T.H.; Suryavanshi, A.K.; Wong, S.F.; AnisurRahman, K.M.: Sulfate resistance of concrete containing mineral admixtures. ACI Mater. J. 97(5), 536–549 (2000)

    Google Scholar 

  48. Al-Amoudi, O.S.B.: Attack on plain and blended cements exposed to aggressive sulfate environments. Cem. Concr. Compos 24(3–4), 305–316 (2002)

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant Nos. 42101136, 42071087), the China Postdoctoral Science Foundation (Grant No. 2021M692697), the State Key Laboratory of Frozen Soil Engineering (Grant No. SKLFSE202007), the Sichuan Science and Technology Program (Grant No. 2021YFQ0021), and the Sichuan Youth Science and Technology Innovation Research Team (Grant No. 2019JDTD0017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyi Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Liu, J., Fan, X. et al. Study on the Mechanical Properties and Microstructure of Fiber-Reinforced Concrete Subjected to Sulfate Erosion. Arab J Sci Eng 47, 13639–13653 (2022). https://doi.org/10.1007/s13369-022-06849-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06849-8

Keywords

Navigation