Skip to main content
Log in

Influence of High Viscosity Petroleum Resin (HV-PR) on the Intermediate and High Temperature Performances of Styrene–Butadiene–Styrene Block Copolymer (SBS) Modified Bitumen

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study the effect of high viscosity petroleum resin (HV-PR) on the microstructure and macro properties of styrene–butadiene–styrene block copolymer (SBS) modified bitumen. SBS modified bitumen was prepared with different content of HV-PR in this paper. The microscopic images were obtained by fluorescence microscope and were analyzed qualitatively and quantitatively with MATLAB and image-pro software. The dynamic shear rheometer test was used to study the dynamic shear properties of SBS modified bitumen with different HV-PR content. The effect of different HV-PR content on the aging resistance of the modified bitumen was studied. The other technical properties of SBS modified bitumen with different HV-PR content, such as segregation softening point difference etc. were also tested. The research results show that: HV-PR can help SBS to be sheared into smaller particles during the shearing process, effectively improve the swelling degree of SBS modifier, improve the spatial distribution of cross-linking structure, and form a more compact cross-linking structure. The addition of HV-PR can effectively improve the high-temperature deformation resistance and fatigue damage resistance of SBS modified bitumen, the higher the HV-PR content, the more obvious the improvement effect. The addition of HV-PR can also significantly reduce the loss of ductility and the gain of viscosity of SBS modified bitumen during the long-term aging process. The higher the HV-PR content, the more significant the effect. HV-PR can effectively improve the viscosity, low-temperature performance, and storage stability of bitumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Diab, A.; You, Z.; Adhikari, S.; You, L.; Li, X.; El-Shafie, M.: Investigating the mechanisms of rubber, styrene-butadiene-styrene and ethylene-vinyl acetate in asphalt binder based on rheological and distress-related tests. Constr. Build. Mater. 262, 120744 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120744

    Article  Google Scholar 

  2. Ameli, A.; Babagoli, R.; Khabooshani, M.; AliAsgari, R.; Jalali, F.: Permanent deformation performance of binders and stone mastic asphalt mixtures modified by SBS/montmorillonite nanocomposite. Constr. Build. Mater. 239, 117700 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117700

    Article  Google Scholar 

  3. Zhang, J.; Yao, Z.; Wang, K.; Wang, F.; Jiang, H.; Liang, M.; Wei, J.; Airey, G.: Sustainable utilization of bauxite residue (Red Mud) as a road material in pavements: a critical review. Constr. Build. Mater. 270, 121419 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121419

    Article  Google Scholar 

  4. Ji, X.; Han, B.; Hu, J.; Li, S.; Xiong, Y.; Sun, E.: Application of the discrete element method and CT scanning to investigate the compaction characteristics of the soil–rock mixture in the subgrade. Road Mater. Pavement Des. (2020). https://doi.org/10.1080/14680629.2020.1826350

    Article  Google Scholar 

  5. Jin, J.; Gao, Y.; Wu, Y.; Liu, S.; Liu, R.; Wei, H.; Qian, G.; Zheng, J.: Rheological and adhesion properties of nano-organic palygorskite and linear SBS on the composite modified asphalt. Powder Technol. 377, 212–221 (2021). https://doi.org/10.1016/j.powtec.2020.08.080

    Article  Google Scholar 

  6. Wu, S.; He, R.; Chen, H.; Li, W.; Li, G.: Rheological properties of SBS/CRP composite modified asphalt under different aging treatments. Materials. 13, 4921 (2020). https://doi.org/10.3390/ma13214921

    Article  Google Scholar 

  7. Chen, Z.; Zhang, D.; Zhang, Y.; Zhang, H.; Zhang, S.: Influence of multi-dimensional nanomaterials composite form on thermal and ultraviolet oxidation aging resistances of SBS modified asphalt. Constr. Build. Mater. 273, 122054 (2021). https://doi.org/10.1016/j.conbuildmat.2020.122054

    Article  Google Scholar 

  8. Rezaei, S.; Damadi, S.M.; Edrisi, A.; Fakhri, M.; Khordehbinan, M.W.: Fatigue analysis of bitumen modified with composite of nano-sio2 and styrene butadiene styrene polymer. Frattura ed Integrità Strutturale. 14, 202–209 (2020). https://doi.org/10.3221/IGF-ESIS.53.17

    Article  Google Scholar 

  9. Shafabakhsh, G.; Rajabi, M.: The fatigue behavior of SBS/nanosilica composite modified asphalt binder and mixture. Constr. Build. Mater. 229, 116796 (2019). https://doi.org/10.1016/j.conbuildmat.2019.116796

    Article  Google Scholar 

  10. Mirzaiyan, D.; Ameri, M.; Amini, A.; Sabouri, M.; Norouzi, A.: Evaluation of the performance and temperature susceptibility of gilsonite-and SBS-modified asphalt binders. Constr. Build. Mater. 207, 679–692 (2019). https://doi.org/10.1016/j.conbuildmat.2019.02.145

    Article  Google Scholar 

  11. Mortezaei, M.; Shabani, S.; Mohammadian-Gerzaz, S.: Assessing the effects of premixing on the rheological properties for three-phases asphalt binder nano-composite including clay and SBS. Constr. Build. Mater. 231, 117151 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117151

    Article  Google Scholar 

  12. Li, B.; Li, X.; Kundwa, M.J.; Li, Z.; Wei, D.: Evaluation of the adhesion characteristics of material composition for polyphosphoric acid and SBS modified bitumen based on surface free energy theory. Constr. Build. Mater. 266, 121022 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121022

    Article  Google Scholar 

  13. Liu, B.; Li, J.; Han, M.; Zhang, Z.; Jiang, X.: Properties of polystyrene grafted activated waste rubber powder (PS-ARP) composite SBS modified asphalt. Constr. Build. Mater. 238, 117737 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117737

    Article  Google Scholar 

  14. Nie, X.; Hou, T.; Yao, H.; Li, Z.; Zhou, X.; Li, C.: Effect of C9 petroleum resins on improvement in compatibility and properties of SBS-modified asphalt. Pet. Sci. Technol. 37, 1704–1712 (2019). https://doi.org/10.1080/10916466.2019.1602642

    Article  Google Scholar 

  15. Zhang, W.; Jia, Z.; Wang, F.: Effect and prediction of aromatic oil on swelling degree of direct-to-plant SBS modifier in bitumen. Pet. Sci. Technol. 37, 1033–1040 (2019). https://doi.org/10.1080/10916466.2019.1570255

    Article  Google Scholar 

  16. Hao, G.; Wang, Y.: 3D reconstruction of polymer phase in polymer-modified asphalt using confocal fluorescence microscopy. J. Mater. Civ. Eng. 33, 04020400 (2021). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003485

    Article  Google Scholar 

  17. Zhang, W.; Wang, F.; Shi, J.; Li, Z.; Liang, X.: Experimental study on nano-parameters of styrene-butadiene-styrene block copolymer modified bitumen based on atomic force microscopy. Polymers 11, 989 (2019). https://doi.org/10.3390/polym11060989

    Article  Google Scholar 

  18. Cuciniello, G.; Leandri, P.; Losa, M.; Airey, G.: Effects of ageing on the damage tolerance of polymer modified bitumens investigated through the LAS test and fluorescence microscopy. Int. J. Pavement Eng. (2020). https://doi.org/10.1080/10298436.2020.1788031

    Article  Google Scholar 

  19. Zhang, W.; Jia, Z.; Zhang, Y.; Hu, K.; Ding, L.; Wang, F.: The effect of direct-to-plant styrene-butadiene-styrene block copolymer components on bitumen modification. Polymers 11, 140 (2019). https://doi.org/10.3390/polym11010140

    Article  Google Scholar 

  20. Wei, Y.; Liu, Y.; Muhammad, Y.; Subhan, S.; Meng, F.; Ren, D.; Han, M.; Li, J.: Study on the properties of GNPs/PS and GNPs/ODA composites incorporated SBS modified asphalt after short-term and long-term aging. Constr. Build. Mater. 261, 119682 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119682

    Article  Google Scholar 

  21. Cuciniello, G.; Leandri, P.; Filippi, S.; Lo Presti, D.; Polacco, G.; Losa, M.; Airey, G.: Microstructure and rheological response of laboratory-aged SBS-modified bitumens. Road Mater. Pavement Des. 22, 372–396 (2021). https://doi.org/10.1080/14680629.2019.1621771

    Article  Google Scholar 

  22. Zhang, W.; Ding, L.; Jia, Z.: Design of SBS-modified bitumen stabilizer powder based on the vulcanization mechanism. Appl. Sci. 8, 457 (2018). https://doi.org/10.3390/app8030457

    Article  Google Scholar 

  23. Shi, J.; Zhao, P.; Fan, W.; Yang, Z.: Ouyang, J: Facile preparation and application performance evaluation of SBS/C9 petroleum resin blends as modifier for high viscosity asphalt. Constr. Build. Mater. 262, 120073 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120073

    Article  Google Scholar 

  24. Wang, K.; Lv, D.; Yao, L.: Preparation and property of C9 PR/SBS high-viscous asphalt. New Chemical Materials. 49, 259–268 (2021). https://doi.org/10.19817/j.cnki.issn1006-3536.2021.01.057

  25. Zhang, W.; Qiu, L.; Liu, J.; Hu, K.; Zou, L.; Chen, Y.; Yang, C.; Wang, F.; Zang, J.: Modification mechanism of C9 petroleum resin and its influence on SBS modified asphalt. Constr. Build. Mater. 306, 124740 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124740

    Article  Google Scholar 

  26. Hu, K.; Yu, C.; Chen, Y.; Li, W.; Chen, G.; Zhang, W.: Multiscale mechanisms of asphalt performance enhancement by crumbed waste tire rubber. Insight from molecular dynamics simulation. (2021). https://doi.org/10.21203/rs.3.rs-319361/v1

  27. Tian, Z.; Zhang, Z.; Zhang, K.; Huang, S.; Luo, Y.: Preparation and properties of high viscosity and elasticity asphalt by styrene–butadiene–styrene/polyurethane prepolymer composite modification. J. Appl. Polym. Sci. 137, 49123 (2020). https://doi.org/10.1002/app.49123

    Article  Google Scholar 

  28. Walubita, L.F.; Mahmoud, E.; Fuentes, L.; Prakoso, A.; Lee, S.I.; Souliman, M.; Komba, J.J.: Correlating the asphalt-binder high-temperature properties (DSR) to HMA permanent deformation (RLPD) and field rutting: a laboratory-field study. Constr. Build. Mater. 262, 120761 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120761

    Article  Google Scholar 

  29. Liu, J.; Liu, J.; Saboundjian, S.: Evaluation of cracking susceptibility of Alaskan polymer modified asphalt binders using chemical and rheological indices. Constr. Build. Mater. 271, 121897 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121897

    Article  Google Scholar 

  30. Filonzi, A.; Lee, S.K.; Ferreira, W.; Hajj, R.; Bhasin, A.: A micro-extraction method for use with 4 mm plate geometry in the dynamic Shear Rheometer to evaluate asphalt binder rheology. Constr. Build. Mater. 252, 119024 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119024

    Article  Google Scholar 

  31. Buss, A.F.; Claypool, B.S.; Higgins, J.R.; Travis, C.; Glidden, S.: Influence of binder source and recycled asphalt materials on asphalt binder relaxation properties for northern climates. J. Cold Regions Eng. 35, 04020028 (2021). https://doi.org/10.1061/(ASCE)CR.1943-5495.0000235

    Article  Google Scholar 

  32. Abed, A.H.; Bahia, H.U.: Enhancement of permanent deformation resistance of modified asphalt concrete mixtures with nano-high density polyethylene. Constr. Build. Mater. 236, 117604 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117604

    Article  Google Scholar 

  33. Ma, Y.; Hu, W.; Polaczyk, P.A.; Han, B.; Xiao, R.; Zhang, M.; Huang, B.: Rheological and aging characteristics of the recycled asphalt binders with different rejuvenator incorporation methods. J. Clean. Prod. 262, 121249 (2020). https://doi.org/10.1016/j.jclepro.2020.121249

    Article  Google Scholar 

  34. Zadshir, M.; Ploger, D.; Yu, X.; Sangiorgi, C.; Yin, H.: Chemical, thermophysical, rheological, and microscopic characterisation of rubber modified asphalt binder exposed to UV radiation. Road Materials Pavement Des. 21, S123–S139 (2020). https://doi.org/10.1080/14680629.2020.1736606

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by “Key Laboratory of Transport Industry of Road Structure and Material (Research Institute of Highway, Ministry of Transport), China, grant number 2019-Keji-271”, “Zhangdian District Science and Technology Bureau, China, grant number 9001-118232” and “National Key R&D Program of China, grant number 2018YFB1600100”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zou, L., Wang, Y. et al. Influence of High Viscosity Petroleum Resin (HV-PR) on the Intermediate and High Temperature Performances of Styrene–Butadiene–Styrene Block Copolymer (SBS) Modified Bitumen. Arab J Sci Eng 47, 12521–12533 (2022). https://doi.org/10.1007/s13369-021-06550-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06550-2

Keywords

Navigation