Skip to main content
Log in

The Effects of Calcium Aluminate Cement Substitution on Physicochemical Properties of Geopolymer–Zeolite Composites

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Zeolites are porous aluminosilicate materials and are commonly used as adsorbents for various pollutants. Geopolymers made from industrial waste materials have an aluminosilicate structure similar to zeolites and can be converted to crystalline zeolites under high temperature and pressure conditions (hydrothermal conditions). The present study investigated the effects of fly ash substitution by calcium aluminate cement (CAC) in hydrothermally-treated geopolymer binders (often referred to as geopolymer-zeolite composites or geopolymer-supported zeolites). The substitution levels of fly ash by CAC were varied from 0 to 50% (0, 10%, 20%, 40%, or 50%). A mixture of waterglass and NaOH solutions was used for alkali activation of raw materials. The test results revealed that the CAC significantly affected the strength development and reaction products. All the CAC-substituted specimens showed significantly higher strength than fly ash-based control specimens. It was noted that the rise in compressive strength was mainly due to the formation of C–A–S–H gel in CAC-substituted specimens. The control specimens showed Na–P1 type zeolite while chabazite, faujasite, and hydroxysodalite phases were identified with incorporation of CAC. Hence, it was found that the CAC addition resulted in different Ca/Si molar ratios, which promoted the formation of different types of zeolites, thus these specimens can potentially be used for specific target applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Van Deventer, J.S.J.: Geopolymer technology: The current state of the art. J. Mater. Sci. 42, 2917–2933 (2007). https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  2. Gartner, E.: Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 34, 1489–1498 (2004). https://doi.org/10.1016/j.cemconres.2004.01.021

    Article  Google Scholar 

  3. Provis, J.L., van Deventer, J.S.J. (eds.) Alkali Activated Materials: State-of-the-art Report, RILEM TC 224-AAM, vol. 13. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7672-2.

  4. Yeddula, B.S.R.; Karthiyaini, S.: Experimental investigations and prediction of thermal behaviour of ferrosialate-based geopolymer mortars. Arab. J. Sci. Eng. 45, 3937–3958 (2020). https://doi.org/10.1007/s13369-019-04314-7

    Article  Google Scholar 

  5. Kumar, M.L.; Revathi, V.: Microstructural properties of alkali-activated metakaolin and bottom ash geopolymer. Arab. J. Sci. Eng. 45, 4235–4246 (2020). https://doi.org/10.1007/s13369-020-04417-6

    Article  Google Scholar 

  6. Alghannam, M.; Albidah, A.; Abbas, H.; Al-Salloum, Y.: Influence of critical parameters of mix proportions on properties of MK-based geopolymer concrete. Arab. J. Sci. Eng. 46, 4399–408 (2021). https://doi.org/10.1007/s13369-020-04970-0

    Article  Google Scholar 

  7. Wang, H., Zhu, Z., Pu, S., Song, W.: Solidification/stabilization of Pb2+ and Cd2+ contaminated soil using fly ash and GGBS based geopolymer. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-06109-1

  8. Khalid, H.R.; Lee, N.K.; Park, S.M.; Abbas, N.; Lee, H.K.: Synthesis of geopolymer-supported zeolites via robust one-step method and their adsorption potential. J. Hazard. Mater. 353, 522–533 (2018). https://doi.org/10.1016/j.jhazmat.2018.04.049

    Article  Google Scholar 

  9. Park, S.M.; Khalid, H.R.; Seo, J.H.; Yoon, H.N.; Son, H.M.; Kim, S.H., et al.: Pressure-induced geopolymerization in alkali-activated fly ash. Sustainability 10(3538), 11 (2018). https://doi.org/10.3390/su10103538

    Article  Google Scholar 

  10. Oh, J.E.; Jun, Y.; Jeong, Y.: Characterization of geopolymers from compositionally and physically different Class F fly ashes. Cem. Concr. Compos. 50, 16–26 (2014). https://doi.org/10.1016/j.cemconcomp.2013.10.019

    Article  Google Scholar 

  11. Khalid, H.R., Lee, N.K., Choudhry, I., Wang, Z., Lee, H.K.: Evolution of zeolite crystals in geopolymer-supported zeolites: effects of composition of starting materials. Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2018.12.044.

  12. Rożek, P.; Król, M.; Mozgawa, W.: Geopolymer–zeolite composites: a review. J. Clean. Prod. 230, 557–579 (2019). https://doi.org/10.1016/j.jclepro.2019.05.152

    Article  Google Scholar 

  13. Querol, X.; Moreno, N.; Umaa, J.C.; Alastuey, A.; Hernández, E.; López-Soler, A., et al.: Synthesis of zeolites from coal fly ash: an overview. Int. J. Coal Geol. 50, 413–423 (2002). https://doi.org/10.1016/S0166-5162(02)00124-6

    Article  Google Scholar 

  14. Woolard, C.D., Petrus, K., Van der Horst, M.: The use of a modified fly ash as an adsorbent for lead. Water SA (2000)

  15. Wdowin, M.; Wiatros-Motyka, M.M.; Panek, R.; Stevens, L.A.; Franus, W.; Snape, C.E.: Experimental study of mercury removal from exhaust gases. Fuel (2014). https://doi.org/10.1016/j.fuel.2014.03.041

    Article  Google Scholar 

  16. Warchoł, J.; Matłok, M.; Misaelides, P.; Noli, F.; Zamboulis, D.; Godelitsas, A.: Interaction of U aqVI with CHA-type zeolitic materials. Microp. Mesop. Mater. (2012). https://doi.org/10.1016/j.micromeso.2011.12.045

    Article  Google Scholar 

  17. Mortier, W.J.; Pluth, J.J.; Smith, J.V.: Positions of cations and molecules in zeolites with the chabazite framework II Adsorption of carbon monoxide on dehydrated Ca-exchanged chabazite. Mater. Res. Bull. (1977). https://doi.org/10.1016/0025-5408(77)90095-2

    Article  Google Scholar 

  18. Nikolakis, V.; Xomeritakis, G.; Abibi, A.; Dickson, M.; Tsapatsis, M.; Vlachos, D.G.: Growth of a faujasite-type zeolite membrane and its application in the separation of saturated/unsaturated hydrocarbon mixtures. J. Membr. Sci. (2001). https://doi.org/10.1016/S0376-7388(00)00623-2

    Article  Google Scholar 

  19. Maiti, M.; Sarkar, M.; Xu, S.; Das, S.; Adak, D.; Maiti, S.: Application of silica nanoparticles to develop faujasite nanocomposite for heavy metal and carcinogenic dye degradation. Environ. Prog. Sustain. Energy (2019). https://doi.org/10.1002/ep.12904

    Article  Google Scholar 

  20. Esaifan, M.; Hourani, M.; Khoury, H.; Rahier, H.; Wastiels, J.: Synthesis of hydroxysodalite zeolite by alkali-activation of basalt powder rich in calc-plagioclase. Adv. Powder Technol. (2017). https://doi.org/10.1016/j.apt.2016.11.002

    Article  Google Scholar 

  21. Kazemimoghadam, M.; Mohammadi, T.: Mechanisms and experimental results of aqueous mixtures pervaporation using nanopore HS zeolite membranes. Desalination (2010). https://doi.org/10.1016/j.desal.2010.06.004

    Article  Google Scholar 

  22. Lee, N.K.; Khalid, H.R.; Lee, H.K.: Adsorption characteristics of cesium onto mesoporous geopolymers containing nano-crystalline zeolites. Microp. Mesop. Mater. 242, 238–244 (2017). https://doi.org/10.1016/j.micromeso.2017.01.030

    Article  Google Scholar 

  23. Van Der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R.: A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 22, 46–56 (2003). https://doi.org/10.1002/ep.670220116

    Article  Google Scholar 

  24. Lee, N.K.; Khalid, H.R.; Lee, H.K.: Synthesis of mesoporous geopolymers containing zeolite phases by a hydrothermal treatment. Microp. Mesop. Mater. 229, 22–30 (2016). https://doi.org/10.1016/j.micromeso.2016.04.016

    Article  Google Scholar 

  25. Simão, L.; De Rossi, A.; Hotza, D.; Ribeiro, M.J.; Novais, R.M.; Klegues Montedo, O.R., et al.: Zeolites-containing geopolymers obtained from biomass fly ash: influence of temperature, composition, and porosity. J. Am. Ceram. Soc. 104, 803–815 (2021). https://doi.org/10.1111/jace.17512

    Article  Google Scholar 

  26. Jamsheer, A.F.; Kupwade-Patil, K.; Büyüköztürk, O.; Bumajdad, A.: Analysis of engineered cement paste using silica nanoparticles and metakaolin using 29Si NMR, water adsorption and synchrotron X-ray diffraction. Constr. Build. Mater. (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.272

    Article  Google Scholar 

  27. Inada, M.; Eguchi, Y.; Enomoto, N.; Hojo, J.: Synthesis of zeolite from coal fly ashes with different silica–alumina composition. Fuel (2005). https://doi.org/10.1016/j.fuel.2004.08.012

    Article  Google Scholar 

  28. Bakharev, T.: Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res. 35, 1224–1232 (2005). https://doi.org/10.1016/j.cemconres.2004.06.031

    Article  Google Scholar 

  29. Steenbruggen, G.; Hollman, G.G.: The synthesis of zeolites from fly ash and the properties of the zeolite products. J. Geochem. Explor. (1998). https://doi.org/10.1016/S0375-6742(97)00066-6

    Article  Google Scholar 

  30. Park, S.M.; Jang, J.G.; Lee, N.K.; Lee, H.K.: Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures. Cem. Concr. Res. 89, 72–79 (2016). https://doi.org/10.1016/j.cemconres.2016.08.004

    Article  Google Scholar 

  31. IZA. International Zeolite Association 1973. http://www.iza-online.org/. Accessed 3 Nov 2020

  32. Minerals.net. https://www.minerals.net/mineral/chabazite.aspx. Accessed 3 Nov 2020

  33. Sugano, Y.; Sahara, R.; Murakami, T.; Narushima, T.; Iguchi, Y.; Ouchi, C.: Hydrothermal synthesis of zeolite A using blast furnace slag. ISIJ Int. 45, 937–945 (2005). https://doi.org/10.2355/isijinternational.45.937

    Article  Google Scholar 

  34. Wajima, T.; Shimizu, T.; Ikegami, Y.: Zeolite synthesis from paper sludge ash with addition of diatomite. J. Chem. Technol. Biotechnol. 83, 921–927 (2008). https://doi.org/10.1002/jctb.1893

    Article  Google Scholar 

  35. Son, H.M.; Park, S.; Kim, H.Y.; Seo, J.H.; Lee, H.K.: Effect of CaSO4 on hydration and phase conversion of calcium aluminate cement. Constr. Build. Mater. 224, 40–47 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.004

    Article  Google Scholar 

  36. Baerlocher, C., McCusker, L.B.: Database of zeolite structures. Available at http://www.iza-structure.org/databases/ (2014)

  37. Liu, Y.; Yan, C.; Zhang, Z.; Wang, H.; Zhou, S.; Zhou, W.: A comparative study on fly ash, geopolymer and faujasite block for Pb removal from aqueous solution. Fuel 185, 181–189 (2016). https://doi.org/10.1016/j.fuel.2016.07.116

    Article  Google Scholar 

  38. Grey, T.J.; Nicholson, D.; Gale, J.D.; Peterson, B.K.: A simulation study of the adsorption of nitrogen in Ca-chabazite. Appl. Surf. Sci. 196, 105–114 (2002). https://doi.org/10.1016/S0169-4332(02)00042-9

    Article  Google Scholar 

  39. Oh, J.E.; Moon, J.; Mancio, M.; Clark, S.M.; Monteiro, P.J.M.: Bulk modulus of basic sodalite, Na8[AlSiO4] 6(OH)2·2H2O, a possible zeolitic precursor in coal-fly-ash-based geopolymers. Cem Concr Res (2011). https://doi.org/10.1016/j.cemconres.2010.09.012

    Article  Google Scholar 

  40. Munthali, M.W.; Elsheikh, M.A.; Johan, E.; Matsue, N.: Proton adsorption selectivity of zeolites in aqueous media: effect of Si/Al ratio of zeolites. Molecules (2014). https://doi.org/10.3390/molecules191220468

    Article  Google Scholar 

  41. Baek, W.; Ha, S.; Hong, S.; Kim, S.; Kim, Y.: Cation exchange of cesium and cation selectivity of natural zeolites: chabazite, stilbite, and heulandite. Microp. Mesop. Mater. (2018). https://doi.org/10.1016/j.micromeso.2018.01.025

    Article  Google Scholar 

  42. Lach, M.; Korniejenko, K.; Walter, J.; Stefanska, A.; Mikula, J.: Decreasing of leaching and improvement of geopolymer properties by addition of aluminum. Materials (Basel) 13(495), 1–9 (2020)

    Google Scholar 

  43. Temuujin, J.; Van, R.A.; Williams, R.: Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater. 167, 82–88 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.121

    Article  Google Scholar 

  44. Kim, G.M.; Khalid, H.R.; Kim, H.J.; Lee, H.K.: Alkali activated slag pastes with surface-modified blast furnace slag. Cem. Concr. Compos. (2017). https://doi.org/10.1016/j.cemconcomp.2016.11.009

    Article  Google Scholar 

  45. Kim, G.M., Khalid, H.R., Park, S.M., Lee, H.K.: Flow property of alkali-activated slag with modified precursor. ACI Mater. J. 114, 867–876 (2017). https://doi.org/10.14359/51700794

  46. Li, Z.; Liu, S.: Influence of slag as additive on compressive strength of fly ash-based geopolymer. J. Mater. Civ. Eng. 19, 470–474 (2007). https://doi.org/10.1061/(ASCE)0899-1561(2007)19:6(470)

    Article  Google Scholar 

  47. Kim, E.H.: Understanding effect of silicon/aluminum ratio and calcium hydroxide on chemical composition, nanostructure and compressive strength for metakaolin geopolymers. University of Illinois at Urbana-Champaign (2012)

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals (KFUPM) under Grant SR191025.

Funding

Funding was provided by King Fahd University of Petroleum and Minerals (Grant No. SR191025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hammad R. Khalid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HJ., Khalid, H.R. The Effects of Calcium Aluminate Cement Substitution on Physicochemical Properties of Geopolymer–Zeolite Composites. Arab J Sci Eng 47, 5073–5078 (2022). https://doi.org/10.1007/s13369-021-06394-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06394-w

Keywords

Navigation