Skip to main content

Advertisement

Log in

Hydrothermal Synthesis of TiO2 Nanotubes and Preparation of Paste Using Polyvinylpyrrolidone (PVP) as a Binder for The Photoanode of Dye-Sensitized Solar Cells (DSSCs)

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The morphology of photoanode materials strongly affects the photovoltaic performance of dye-sensitized solar cells. TiO2 nanoparticles possess excellent dye adsorption capability. However, they show low electrical conductivity. Moreover, the penetration of electrolyte into pores of mesoporous TiO2 also promotes recombination reaction. In this work, one-dimensional TiO2 nanotubes (TNTs) have been synthesized by the hydrothermal method. The synthesis was carried out at a hydrothermal temperature of 150 °C and then annealed at 600 °C. The TiO2 nanotubes were characterized by scanning electron microscopy and X-ray diffraction analysis. The photoanode was prepared by depositing TNTs on the conductive glass substrates in the paste form and then annealed at 450 °C. Poly(vinylpyrrolidone) acts as a binder and its amount was optimized in the paste for the best Photovoltaics performance of solar cell. The DSSC with TNTs based photoanode showed higher efficiency (7.53%) compared to the TiO2 nanoparticles-based device (5.88%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmad, W.; Mehmood, U.; Al-Ahmed, A.; Al-Sulaiman, F.A.; Aslam, M.Z.; Kamal, M.S.; Shawabkeh, R.A.: Synthesis of zinc oxide/titanium dioxide (ZnO/TiO2) nanocomposites by wet incipient wetness impregnation method and preparation of ZnO/TiO2 paste using poly(vinylpyrrolidone) for efficient dye-sensitized solar cells. Electrochim. Acta. 222, 473–480 (2016). https://doi.org/10.1016/J.ELECTACTA.2016.10.200

    Article  Google Scholar 

  2. Lee, C.H.; Kim, K.H.; Jang, K.U.; Park, S.J.; Choi, H.W.: Synthesis of TiO 2 nanotube by hydrothermal method and application for dye-sensitized solar cell. Mol. Cryst. Liq. Cryst. (2011). https://doi.org/10.1080/15421406.2011.566078

    Article  Google Scholar 

  3. Kambe, S.; Nakade, S.; Kitamura, T.; Wada, Y.; Yanagida, S.: Influence of the electrolytes on electron transport in mesoporous TiO2-electrolyte systems. J. Phys. Chem. B. 106, 2967–2972 (2002). https://doi.org/10.1021/jp013397h

    Article  Google Scholar 

  4. Sun, K.C.; Qadir, M.B.; Jeong, S.H.: Hydrothermal synthesis of TiO2 nanotubes and their application as an over-layer for dye-sensitized solar cells. RSC Adv. 4, 23223–23230 (2014). https://doi.org/10.1039/c4ra03266g

    Article  Google Scholar 

  5. Karim, N.A.; Mehmood, U.; Zahid, H.F.; Asif, T.: Nanostructured photoanode and counter electrode materials for efficient dye-sensitized solar cells (DSSCs). Sol. Energy. 185, 165–188 (2019). https://doi.org/10.1016/J.SOLENER.2019.04.057

    Article  Google Scholar 

  6. Sharmoukh, W.; Allam, N.K.: TiO 2 nanotube-based dye-sensitized solar cell using new photosensitizer with enhanced open-circuit voltage and fill factor. ACS Appl. Mater. Interfaces. 4, 4413–4418 (2012). https://doi.org/10.1021/am301089t

    Article  Google Scholar 

  7. Roy, P.; Albu, S.P.; Schmuki, P.: TiO2 nanotubes in dye-sensitized solar cells: Higher efficiencies by well-defined tube tops. Electrochem. commun. 12, 949–951 (2010). https://doi.org/10.1016/j.elecom.2010.04.029

    Article  Google Scholar 

  8. Luo, D.; Liu, B.; Fujishima, A.; Nakata, K.: TiO2 nanotube arrays formed on Ti meshes with periodically arranged holes for flexible dye-sensitized solar cells. ACS Appl. Nano Mater. 2, 3943–3950 (2019). https://doi.org/10.1021/acsanm.9b00849

    Article  Google Scholar 

  9. Adachi, M.; Murata, Y.; Okada, I.; Yoshikawa, S.: Formation of titania nanotubes and applications for dye-sensitized solar cells. J. Electrochem. Soc. 150, G488 (2003). https://doi.org/10.1149/1.1589763

    Article  Google Scholar 

  10. Lee, T.H.; Ryu, H.; Lee, W.J.: Fast vertical growth of ZnO nanorods using a modified chemical bath deposition. J. Alloys Compd. 597, 85–90 (2014). https://doi.org/10.1016/j.jallcom.2014.02.003

    Article  Google Scholar 

  11. Meng, Y.; Lin, Y.; Yang, J.: Synthesis of rod-cluster ZnO nanostructures and their application to dye-sensitized solar cells. Appl. Surf. Sci. 268, 561–565 (2013). https://doi.org/10.1016/j.apsusc.2012.12.171

    Article  Google Scholar 

  12. Shah, L.A.; Malik, T.; Siddiq, M.; Haleem, A.; Sayed, M.; Naeem, A.: TiO2 nanotubes doped poly(vinylidene fluoride) polymer membranes (PVDF/TNT) for efficient photocatalytic degradation of brilliant green dye. J. Environ. Chem. Eng. 7, 103291 (2019). https://doi.org/10.1016/j.jece.2019.103291

    Article  Google Scholar 

  13. Lim, Y.C.; Zainal, Z.; Hussein, M.Z.; Tan, W.T.: the effect of heat treatment on phase transformation, morphology and photoelectrochemical response of short Tio 2 nanotubes. Dig. J. Nanomater. Biostruct. 8(1), 167–176 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by PPE department, UET Lahore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umer Mehmood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babar, F., Mehmood, U., Nazar, R. et al. Hydrothermal Synthesis of TiO2 Nanotubes and Preparation of Paste Using Polyvinylpyrrolidone (PVP) as a Binder for The Photoanode of Dye-Sensitized Solar Cells (DSSCs). Arab J Sci Eng 47, 6379–6383 (2022). https://doi.org/10.1007/s13369-021-06362-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06362-4

Keywords

Navigation