Skip to main content
Log in

Numerical Analysis to Evaluate the Effect of Wall Temperature on Skin Friction and Stanton Number for Turbulent Flows over a Flat Plate from Mach 2–8

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The computational approaches of CFD are more powerful than the analytical solutions for high-speed compressible flows over a flat plate. A small number of expensive experimental data can be generated to aid high-speed vehicle design. However, CFD can be used to simulate a large variety of flows with different freestream and wall conditions in a cost-effective manner. The current work aims to numerically calculate the turbulent boundary layer flows over a flat plate at different Mach numbers in the range of 2–8 at different wall conditions and unit Reynolds numbers. The Reynolds-averaged Navier–Stokes method with k − ω turbulence model is applied to resolve the flow over the flat plate at zero angle of attack. The computed skin friction coefficient and Stanton number are compared with the available experimental data in the literature. The calculated results indicate some agreement with the experimental data. An increase in the Mach number and wall temperature decreases the skin friction and the Stanton number. A polynomial curve fit data estimation is proposed for skin friction under adiabatic wall conditions for Mach numbers in the range of 2–8. Numerical simulations over compression corner flows are also presented in the present work. The freestream Mach number influences the thickness of the subsonic layer in the undisturbed boundary layer on the flat plate in compression corner flows. The higher freestream Mach number results in a lower subsonic thickness near the wall, leading to a small separation bubble and lower peak heat transfer in shock/boundary-layer interaction flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C f :

Skin friction coefficient (–)

C h :

Stanton number (–)

H :

Shape factor (–)

K :

Turbulent kinetic energy (m2 s2)

M :

Freestream Mach number (–)

P w :

Wall pressure (Pa)

P :

Freestream pressure (Pa)

Pr:

Prandtl number (–)

q w :

Wall heat flux (W m2)

Re :

Reynolds number based on plate length (–)

Re1 :

Freestream unit Reynolds number (m1)

T :

Freestream temperature (K)

T wad :

Adiabatic wall temperature (K)

T w :

Wall Temperature (K)

T r :

Recovery wall temperature (K)

V :

Local velocity (m s1)

V :

Freestream velocity (m s1)

δ :

Boundary-layer thickness at end of a flat plate (m)

δ 0 :

Upstream boundary-layer thickness (m)

Θ:

Momentum thickness (m)

δ * :

Displacement thickness (m)

τ w :

Wall shear stress (N m2)

ρ :

Density (kg m3)

ω :

Turbulent kinetic energy dissipation rate (m2 s3)

wad:

Adiabatic wall condition

w:

Wall condition

∞:

Freestream condition

r:

Recovery

References

  1. Goyne, C.P.; Stalker, R.J.; Paull, A.: Skin-friction measurements in high-enthalpy hypersonic boundary layers. J. Fluid Mech. (2003). https://doi.org/10.1017/S0022112003003975

    Article  MATH  Google Scholar 

  2. van Driest, E.R.: Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18, 145–160 (1951). https://doi.org/10.2514/8.1895

    Article  MathSciNet  MATH  Google Scholar 

  3. Spalding, D.B.; Chi, S.W.: The drag of a compressible turbulent boundary layer on a smooth flat plate with and without heat transfer. J. Fluid Mech. 18, 117–143 (1964). https://doi.org/10.1017/S0022112064000088

    Article  MATH  Google Scholar 

  4. Cary Jr, A.M.: Summary of available information on Reynolds analogy for zero-pressure-gradient, compressible, turbulent-boundary-layer flow. NASA TN D-5560, Langley Research Center, Langley Station, Hampton (1970)

  5. Cary Jr, A.M.; Bertram, M.H.: Engineering prediction of turbulent skin friction and heat transfer in high-speed flow (1974)

  6. Kornilov, V.I.: Transition of the boundary layer on a flat plate at supersonic and hypersonic velocities. Thermophys. Aeromech. 16, 347–354 (2009). https://doi.org/10.1134/S0869864309030032

    Article  Google Scholar 

  7. Orlik, E.; Kornilov, V.; Ferrier, M.; Fedioun, I.; Davidenko, D.: Hypersonic laminar/turbulent transition: computations and experiments. Prog. Flight Phys. 3, 243–252 (2012). https://doi.org/10.1051/eucass/201203243

    Article  Google Scholar 

  8. Narasimha, R.: The laminar-turbulent transition zone in the boundary layer. Prog. Aerosp. Sci. 22, 29–80 (1985). https://doi.org/10.1016/0376-0421(85)90004-1

    Article  Google Scholar 

  9. Raghunath, S.; Khoo, B.C.: Characteristics of turbulent spots in a hypersonic transitional boundary layer inferred from dense arrays of thin-film heat transfer Gauges, pp. 2509–2516 (2019). https://doi.org/10.3850/978-981-11-2730-4

  10. Mee, D.J.: Boundary-layer transition measurements in hypervelocity flows in a shock tunnel. AIAA J. (2002). https://doi.org/10.2514/2.1851

    Article  Google Scholar 

  11. Duan, L.; Martín, M.P.: Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. J Fluid Mech. 684, 25–59 (2011). https://doi.org/10.1017/jfm.2011.252

    Article  MathSciNet  MATH  Google Scholar 

  12. Bertin, J.J.; Cummings, R.M.: Fifty years of hypersonics: where we’ve been, where we’re going. Prog. Aerosp. Sci. 39, 511–536 (2003). https://doi.org/10.1016/S0376-0421(03)00079-4

    Article  Google Scholar 

  13. Fauci, R.; Aerospace, I.; Factor, O.; Time, A.; Engineer, S.D.; Systems, T.; Researcher, S.: Hypersonic laminar-turbulent transition experiment. Presented at the (2010)

  14. Zhou, Y.Y.; Zhao, Y.L.; Zhao, Y.X.: A study on the separation length of shock wave/turbulent boundary layer interaction. Int. J. Aerosp. Eng. (2019). https://doi.org/10.1155/2019/8323787

    Article  Google Scholar 

  15. Kays, W.M., Crawford, M.E., and Weigand, W. Convective Heat and Mass Transfer. McGraw Hill, 4th edition (2004)

  16. Duan, L.; Beekman, I.; Martín, M.P.: Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J Fluid Mech. 655, 419–445 (2010). https://doi.org/10.1017/S0022112010000959

    Article  MATH  Google Scholar 

  17. Zhang, C.; Duan, L.; Choudhari, M.M.: Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J. 56, 4297–4311 (2018). https://doi.org/10.2514/1.J057296

    Article  Google Scholar 

  18. Maeder, T.; Adams, N.A.; Kleiser, L.: Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. J. Fluid Mech. (2001). https://doi.org/10.1017/S0022112000002718

    Article  MATH  Google Scholar 

  19. Rizzetta, D.P.; Visbal, M.R.: Large-eddy simulation of supersonic boundary-layer flow by a high-order method. Int. J. Comput. Fluid Dyn. (2004). https://doi.org/10.1080/10618560310001614926

    Article  MATH  Google Scholar 

  20. Smits, A.J.; Martin, M.P.: Turbulence in supersonic and hypersonic boundary layers. In: Solid Mechanics and its Applications (2006)

  21. Martin, M.P.: Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J. Fluid Mech. 570, 347–364 (2007). https://doi.org/10.1017/S0022112006003107

    Article  MATH  Google Scholar 

  22. Li, X.L., Fu, D.X., Ma, Y.W., Liang, X.: Direct numerical simulation of compressible turbulent flows. Acta Mech. Sin. 26, 795–806 (2010). https://doi.org/10.1007/s10409-010-0394-8

    Article  MATH  Google Scholar 

  23. Lagha, M.; Kim, J.; Eldredge, J.D.; Zhong, X.: A numerical study of compressible turbulent boundary layers. Phys. Fluids (2011). https://doi.org/10.1063/1.3541841

    Article  Google Scholar 

  24. Duan, L.; Beekman, I.; Martín, M.P.: Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J Fluid Mech. 672, 245–267 (2011). https://doi.org/10.1017/S0022112010005902

    Article  MATH  Google Scholar 

  25. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  26. Hadjadj, A.; Ben-Nasr, O.; Shadloo, M.S.; Chaudhuri, A.: Effect of wall temperature in supersonic turbulent boundary layers: a numerical study. Int. J. Heat Mass Transf. (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.025

    Article  MATH  Google Scholar 

  27. Yan, H.; Knight, D.; Zheltovodov, A.A.: Large-eddy simulation of supersonic flat-plate boundary layers using the monotonically integrated large-eddy simulation (MILES) technique. J. Fluids Eng. Trans. ASME. 124, 868–875 (2002). https://doi.org/10.1115/1.1516578

    Article  Google Scholar 

  28. Martin, P.: DNS/LES database of hypersonic turbulent boundary layers. In: 33rd AIAA Fluid Dynamics Conference and Exhibit. AIAA, Orlando, Florida (2003)

  29. Roy, C.J.; Blottner, F.G.: Review and assessment of turbulence models for hypersonic flows. Prog. Aerosp. Sci. 42, 469–530 (2006). https://doi.org/10.1016/j.paerosci.2006.12.002

    Article  Google Scholar 

  30. Stemmer, C.; Adams, N.A.: Supersonic and hypersonic boundary-layer flows. Notes Numer. Fluid Mech. Multidiscip. Design. (2009). https://doi.org/10.1007/978-3-642-00262-5_4

    Article  Google Scholar 

  31. Bardina, J.E.; Huang, P.G.; Coakley, T.J.: Turbulence modeling validation, testing, and development. NASA Tech. Memo. (1997). https://doi.org/10.2514/6.1997-2121

    Article  Google Scholar 

  32. Rumsey, C.L.: Turbulence models in hypersonic boundary layer applications. NASA Report (2009)

  33. Wilcox, D.C.: Turbulence modeling for CFD. DCW industries La Canada, CA, Canada (2000)

  34. Bertin, J.J.: Hypersonic Aerothermodynamics. In: AIAA Education Series, AIAA, Washington, DC (1994)

  35. Schneider, S.P.: Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies. Prog. Aerosp. Sci. 40, 1–50 (2004). https://doi.org/10.1016/j.paerosci.2003.11.001

    Article  Google Scholar 

  36. Smits, A.J.; Martin, M.P.: Turbulence in supersonic and hypersonic boundary layers. In: Solid Mechanics and its Applications, pp. 221–230. Springer (2006)

  37. Cousteix, T.C.J.; Cebeci, J.: Modeling and Computation of Boundary-Layer Flows. Springer, Berlin (2005)

    MATH  Google Scholar 

  38. Watson, R.D.: Wall cooling effects on hypersonic transitional/turbulent boundary layers at high Reynolds numbers cooling effects on hypersonic transitional/turbulent boundary layers at high Reynolds numbers. AIAA J. 15, 1455–1461 (1977)

    Article  Google Scholar 

  39. Roussel, A.; Prince, S.; Viguer, M.; Kshitij, A.; Stollery, J.; Garry, K.: The development of a simple method for drag estimation for wedge-like fairings in hypersonic flow. In: ICAS. ICAS (2016)

  40. Pasha, A.A.; Sinha, K.: Shock-unsteadiness model applied to oblique shock wave/turbulent boundary-layer interaction. Int. J. Comput. Fluid Dyn. 22, 569–582 (2008). https://doi.org/10.1080/10618560802290284

    Article  MATH  Google Scholar 

  41. Pasha, A.A.; Sinha, K.: Simulation of hypersonic shock/turbulent boundary-layer interactions using shock-unsteadiness model. J. Propul. Power 28, 46–60 (2012)

    Article  Google Scholar 

  42. Pasha, A.A.: Study of parameters affecting separation bubble size in high speed flows using k-ω turbulence model. J Appl Comput Mech 4, 95–104 (2018). https://doi.org/10.22055/jacm.2017.22761.1140

    Article  Google Scholar 

  43. Ali Pasha, A.; Juhany, K.A.; Khalid, M.: Numerical prediction of shock/boundary-layer interactions at high Mach numbers using a modified Spalart-Allmaras model. Eng. Appl. Comput. Fluid Mech. 12, 459–472 (2018)

    Google Scholar 

  44. Pasha, A.A.; Juhany, K.A.; Pillai, S.N.: One-equation turbulence models applied to practical scramjet inlet. Int. J. Turbo Jet Eng. (2021). https://doi.org/10.1515/tjj-2021-0013

    Article  Google Scholar 

  45. Wilcox, D.C.: Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26, 1299–1310 (1988)

    Article  MathSciNet  Google Scholar 

  46. Roy, S.; Sinha, K.: Variable turbulent Prandtl number model applied to hypersonic shock/boundary-layer interactions, pp. 1–18 (2018). https://doi.org/10.2514/6.2018-3728

  47. Sinha, K.; Candler, G.: Convergence improvement of two-equation turbulence model calculations. In: In 29th AIAA Fluid Dynamics Conference, Albuquerque, NM. aper No. AIAA-Paper-1998–2649 (1998)

  48. Pasha, A.A.: Application of shock-unsteadiness model to hypersonic shock/turbulent boundary-layer interaction (2011)

  49. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994). https://doi.org/10.2514/3.12149

    Article  Google Scholar 

  50. Anderson, J.D., Jr.: Hypersonic and High-Temperature Gas Dynamics, 2nd edn. McGraw Hill, New York (2006)

    Book  Google Scholar 

  51. Boelter, L.M.K.: An investigation of aircraft heaters II: properties of gases (1942)

  52. Brown, J.: Turbulence model validation for hypersonic flows. In: 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. St. Louis, Missouri (2002)

  53. Kumar, P.P.; Dey, J.: Shape factor of the turbulent boundary layer on a flat plate and the Reynolds shear stress in the outer region. Phys. Rev. Fluids. 4, 24605 (2019)

    Article  Google Scholar 

  54. Elfstrom, G.M.: Turbulent separation in hypersonic flow (1971)

  55. Elfstrom, G.M.: Turbulent hypersonic flow at a wedge-compression corner. J. Fluid Mech. 53, 113–127 (1972)

    Article  Google Scholar 

  56. Sinha, K.; Mahesh, K.; Candler, G.V.: Modeling shock unsteadiness in shock/turbulence interaction. Phys Fluids. 15, 2290–2297 (2003). https://doi.org/10.1063/1.1588306

    Article  MATH  Google Scholar 

  57. Veera, V.K.; Sinha, K.: Modeling the effect of upstream temperature fluctuations on shock/homogeneous turbulence interaction. Phys. Fluids. (2009). https://doi.org/10.1063/1.3073744

    Article  MATH  Google Scholar 

  58. Pasha, A.A.; Juhany, K.A.: Numerical simulation of compression corner flows at Mach number 9. Chin. J. Aeronaut. 33, 1611–1624 (2020). https://doi.org/10.1016/j.cja.2020.01.005

    Article  Google Scholar 

  59. Coleman, G.T.: Hypersonic turbulent boundary layer studies (1973)

Download references

Acknowledgements

The project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. D-177-135-1442. The authors, therefore, gratefully acknowledge DSR technical and financial support. We would like to thank the high-performance center (HPC) staff for providing us the Aziz supercomputing facility (http://hpc.kau.edu.sa) to perform the numerical simulations. The authors would also like to thank Professor Krishnendu Sinha from the Department of Aerospace Engineering, Indian Institute of Technology Bombay for his kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad A. Pasha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasha, A.A., Reddy, D.S.K., Abdulla, M.M. et al. Numerical Analysis to Evaluate the Effect of Wall Temperature on Skin Friction and Stanton Number for Turbulent Flows over a Flat Plate from Mach 2–8. Arab J Sci Eng 47, 8243–8256 (2022). https://doi.org/10.1007/s13369-021-06170-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06170-w

Keywords

Navigation