Skip to main content

Supersonic and Hypersonic Boundary-Layer Flows

  • Conference paper
Turbulence and Interactions

Abstract

Supersonic and hypersonic numerical research activities of the “Lehrstuhl für Aerodynamik” at the Technische Universität München are presented in this paper.

Based on the ADM (Approximate Deconvolution Method), LES simulations of a turbulent ramp flow with a subsequent decompression corner at M=2.95 are conducted (the Reynolds number based on the boundary-layer thickness at the inflow is \(Re_{\delta_0}=63 560\) or Re θ = 4705). The results excellently compare with the experimental findings by Zheltovodov et al. [27] and show the feasibility of such large-scale simulation albeit their large computer resource requirements. These simulations predict flow phenomena like the slow motion shock oscillations which can not be captured with RANS simulations. The skin friction, surface pressure and heat transfer can also be predicted correctly in contrast to RANS simulations.

For the hypersonic research, flat-plate boundary layers are investigated to examine the influence of chemical and thermal non-equilibrium on laminar-turbulent transition with direct numerical simulations. This encompasses the modeling of the chemical reactions of dissociating gas and the variable thermodynamic properties which depend on species concentrations. A second temperature describing the vibrational degrees of freedom of the molecules involved is used to model the thermal non-equilibrium. The direct numerical simulations reveal a changing disturbance evolution for equilibrium and non-equilibrium calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, N.A., Shariff, K.: A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems. J. of Comp. Phys. 127, 27–51 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adams, N.A.: Direct Numerical Simulation of Turbulent Compression Ramp Flow. Theor. and Comp. Fl. Dynamics 12, 109–129 (1998)

    Article  MATH  Google Scholar 

  3. Adams, N.A.: Direct Simulation of the Turbulent Boundary Layer Along a Compression Ramp at M=3 and Re θ =1685. J. of Fluid Mech. 420, 47–83 (2000)

    Article  MATH  Google Scholar 

  4. Adams, N.A., Stolz, S.: A Deconvolution Approach for Shock-Capturing. J. of Comp. Phys. 178, 391–426 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Anderson, J.D.: Hypersonic and and High Temperature Gas Dynamics. AIAA publication (1989)

    Google Scholar 

  6. Bertolotti, F.P.: The influence of rotational and vibrational energy relaxation on boundary-layer flow. J. Fluid Mech. 372, 93–118 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bertin, J.J., Cummings, R.M.: Critical Hypersonic Aerothermodynamic Phenomena. Ann. Rev. Fluid Mech. 38, 129–157 (2006)

    Article  MathSciNet  Google Scholar 

  8. Candler, G.V.: Chemistry of external flows. Aerothermochemistry for Hypersonic Technology, VKI-LS 1995-04 (1995)

    Google Scholar 

  9. Floryan, J.M.: On the Görtler instability of boundary layers. Prog. Aerospace Sci. 28, 235–271 (1991)

    Article  MATH  Google Scholar 

  10. Gupta, R.N., Yos, M.J., Thompson, R.A., Lee, K.P.: A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30,000K. NASA RP-1232 (1990)

    Google Scholar 

  11. Johnson, H.B., Seipp, T.G., Candler, G.V.: Numerical study of hypersonic reacting boundary layer transition on cones. Physics of Fluids 10, 2676–2685 (1998)

    Article  Google Scholar 

  12. Lele, S.K.: Compact Finite-Difference Schemes With Spectral-Like Resolution. J. Comp. Phys. 103, 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Loginov, M.S., Adams, N.A., Zheltovodov, A.A.: Large-eddy simulation of shock-wave/turbulent boundary-layer interaction. J. Fluid Mech. 565, 135–169 (2006)

    Article  MATH  Google Scholar 

  14. Mack, L.M.: Boundary-Layer Stability Theory, JPL Report 900-277 Rev. A, Jet Propulsion Laboratory, Pasadena, USA (1969)

    Google Scholar 

  15. Mironov, S.G., Maslov, A.A.: Experimental study of secondary stability in a hypersonic shock layer on a flat plate. J. Fluid Mech. 412, 259–277 (2000)

    Article  MATH  Google Scholar 

  16. Park, C.: A Review of Reaction Rates in High Temperature Air. AIAA Paper 89-1740 (1989)

    Google Scholar 

  17. Pirozzoli, S., Grasso, F., Gatski, T.B.: Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Physics of Fluids 16, 530–545 (2004)

    Article  Google Scholar 

  18. Sarma, G.S.R.: Physico-chemical modeling in hypersonic flow simulation. Progress in Aerospace Science 36, 281–349 (2000)

    Article  Google Scholar 

  19. Stemmer, C., Mansour, N.N.: DNS of transition in hypersonic boundary-layer flows including high-temperature gas effects. In: Annual Research Briefs 2001, Center for Turbulence Research, Stanford University, NASA Ames, pp. 143–150 (2001)

    Google Scholar 

  20. Stemmer, C.: Transition investigations on hypersonic flat-plate boundary layers flows with chemical and thermal non-equilibrium. In: Govindarajan, R. (ed.) Sixth IUTAM Symposium on Laminar-Turbulent Transition IUTAM-Symposium, Bangalore, India, December 13-18, pp. 363–368. Springer, Heidelberg (2004)

    Google Scholar 

  21. Stemmer, C.: Hypersonic Transition Investigation. In: A Flat-Plate Boundary-Layer Flow at M=20. AIAA Paper 2005-5136 (2005)

    Google Scholar 

  22. Stolz, S., Adams, N.A., Kleiser, L.: An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13, 997–1015 (2001)

    Article  Google Scholar 

  23. Stolz, S., Adams, N.A., Kleiser, L.: The approximate deconvolution model for large-eddy simulation of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids 13, 2985–3001 (2001)

    Article  Google Scholar 

  24. Schneider, S.P.: Flight data for boundary-layer transition at hypersonic and supersonic speeds. J. of Spacecraft and Rockets 36, 8–20 (1999)

    Article  Google Scholar 

  25. Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comp. Phys. 35, 48–56 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wu, M., Martin, M.P.: Direct Numerical Simulation of Supersonic Turbulent Boundary Layer over a Compression Ramp. AIAA Journal 45, 879–889 (2007)

    Article  Google Scholar 

  27. Zheltovodov, A.A., Trofimov, V.M., Schülein, E., Yakovlev, V.N.: An experimental documentation of supersonic turbulent flows in the vicinity of forward- and backward-facing ramps. Tech. Rep, Institute of Theoretical and Applied Mechanics, USSR Academy of Sciences, Novosibirsk (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stemmer, C., Adams, N.A. (2009). Supersonic and Hypersonic Boundary-Layer Flows. In: Deville, M., Lê, TH., Sagaut, P. (eds) Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00262-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00262-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00261-8

  • Online ISBN: 978-3-642-00262-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics