Skip to main content
Log in

Design of a Microscale Optomechanical Load Cell for Micro-/Nanostructured Materials Testing Applications

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The conceptual design of a microfabricated load cell for mechanical testing of materials is presented that utilizes radiation pressure for the application of load. Using a laser as the source of radiation pressure cyclic and quasi-static materials testing is possible in force, spatial and temporal ranges not previously accessible. The overall design consists of 3 subsystems working in unison for the testing of micro-/nanostructured materials in tension, compression, and bending. One subsystem applies radiation pressure (load); a second subsystem measures displacement optically; and the third subsystem is the optomechanical load cell (OMLC) itself with which the other two subsystems interact. The OMLC translates in one dimension and contains a thermal dissipation structure. A detailed design of the OMLC is presented that takes into consideration optical, mechanical, and thermal considerations when a 1 W laser at 532 nm is utilized. With analytical and computational models, force, displacement, and temporal resolutions are demonstrated. Specifically, it is shown that the design is capable of forces from fN to mN, with 10 pm of displacement resolution and cyclic loads of up to 1 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

k :

Spring constant (N/m)

F :

Force (N)

x :

Displacement, position (m)

P :

Pressure (Pa)

I :

Irradiance (W/m2)

c :

Speed of light (m/s)

R o :

Reflectance (unitless)

A o :

Absorptivity (unitless)

T o :

Transmissivity (unitless)

\(\overrightarrow{k}\) :

Wave vector (m1)

\(\overrightarrow{E}\) :

Electric field (V/m)

\(\overrightarrow{B}\) :

Magnetic field (T)

\(\overrightarrow{p}\) :

Momentum (kg m/s)

t :

Time (s)

u :

Energy density (J/m3)

\(\overrightarrow{S}\) :

Poynting vector (W/m2)

T :

Temperature (K)

A :

Area (m2)

k B :

Boltzmann’s constant (J/K)

L :

Length of beam (m)

M :

Moment (Nm)

M o :

Moment at origin

E :

Elastic modulus (Pa)

I :

Second moment of inertia (m4)

δ :

Maximum deflection (m)

q :

Similarity parameter (unitless)

Δ:

Change or difference

θ :

Angle (°)

v :

Per unit volume

MEMS:

Microelectromechanical systems

sample:

Sample

rad:

Radiation

in:

Into the object

out:

Out of the object

surf:

Surface

photons:

Photons

x:

X-direction

y:

Y-direction

cavity:

Optical cavity

o:

Optical

t:

Total

OMLC:

Optomechanical load cell

SFA:

Surface force apparatus

AFM:

Atomic force microscope

MEMS:

Microelectromechanical systems

EM:

Electromagnetic

PSD:

Position sensing detector

FEM:

Finite element model

SOI:

Silicon on insulator

DOF:

Degree of freedom

References

  1. Helm, C.A.; Knoll, W.; Israelachvili, J.N.: Measurement of ligand–receptor interactions. Proc. Natl. Acad. Sci. USA 88(18), 8169–8173 (1991)

    Article  Google Scholar 

  2. Yang, S.; Saif, M.T.A.: MEMS based force sensors for the study of indentation response of single living cells, pp. 1–7 (2006). https://doi.org/10.1016/j.sna.2006.05.019

  3. Saif, M.T.A., et al.: Functionalized biomicroeletromechanical systems sensors for force response study at local adhesion sites of living cells on substrates. Ann. Biomed. Eng. 31, 950–961 (2003)

    Article  Google Scholar 

  4. Rajagopalan, J.; Han, J.H.; Saif, M.T.A.: Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films. Science (80-. ) 315, 1831–1834 (2007)

    Article  Google Scholar 

  5. Saif, M.T.; Zhang, S.; Haque, A.; Hsia, K.J.: Effect of native Al2O3 on the elastic response of nanoscale Al films. Acta Mater. 50, 2779–2786 (2002)

    Article  Google Scholar 

  6. Kumar, S.; Alam, M.T.; Connell, Z.; Haque, M.A.: Electromigration stress induced deformation mechanisms in free-standing platinum thin films. Scr. Mater. 65(4), 277–280 (2011). https://doi.org/10.1016/j.scriptamat.2011.04.030

    Article  Google Scholar 

  7. Israelachvili, J.: Intermolecular and Surface Forces, 2nd edn. Academic Press, New York (1998)

    Google Scholar 

  8. Israelachvili, J.N.; Adams, G.E.: Direct measurement of long range forces between two mica surfaces in aqueous KNO3 solutions. Nature 262, 774–776 (1976)

    Article  Google Scholar 

  9. Asay, D.B.; Kim, S.H.: Direct force balance method for atomic force microscopy lateral force calibration. Rev. Sci. Instrum. 77, 043903 (2006)

    Article  Google Scholar 

  10. Bowen, W.R.; Hilal, N.; Lovitt, R.W.; Wright, C.J.: Direct measurement of the force of adhesion of a single biological cell using an atomic force microscope. Colloids Surf. A 136, 231–234 (1998)

    Article  Google Scholar 

  11. Pratt, J.R.; Kramar, J.A.; Newell, D.B.; Smith, D.T.: Review of SI traceable force metrology for instrumented indentation and atomic force microscopy. Meas. Sci. Technol. 16, 2129–2137 (2005)

    Article  Google Scholar 

  12. Chung, K.-H.; Shaw, G.A.; Pratt, J.R.: Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy. Rev. Sci. Instrum. 80, 065107 (2009)

    Article  Google Scholar 

  13. Cuenot, S., et al.: Measurement of elastic modulus of nanotubes by resonant contact atomic force microscopy. J. Appl. Phys. 93, 5650–5655 (2003)

    Article  Google Scholar 

  14. Dietzel, D.; Faucher, M.; Iaia, A., et al.: Analysis of mechanical properties of single wall carbon nanotubes fixed at a tip apex by atomic force microscopy. Nanotechnology 16, S73 (2005)

    Article  Google Scholar 

  15. Dulinska, I., et al.: Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy. J. Biochem. Biophys. methods 66, 1–11 (2006)

    Article  Google Scholar 

  16. Green, C.P.; Lioe, H.; Cleveland, J.P.; Proksch, R.; Mulvaney, P.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75, 1988–1996 (2004)

    Article  Google Scholar 

  17. E. D. Langlois, G. A. Shaw, J. A. Kramar, J. R. Pratt, and D. C. Hurley, “Spring constant calibration of atomic force microscopy cantilevers with a piezosensor transfer method,” Rev. Sci. Instrum., vol. 78, 2007. 093705.

  18. Matei, G.A.; Thoreson, E.J.; Pratt, J.R.; Newell, D.B.; Burnham, N.A.: Precision and accuracy of thermal calibration of atomic force microscopy cantilevers. Rev. Sci. Instrum. 77, 083703 (2006)

    Article  Google Scholar 

  19. Ogletree, D.F.; Carpick, R.W.; Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67(9), 3298–3306 (1996)

    Article  Google Scholar 

  20. Saif, M.T.A.; MacDonald, N.C.: Measurement of forces and spring constants of microinstruments. Rev. Sci. Instrum. 69(3), 1410–1422 (1998)

    Article  Google Scholar 

  21. Haque, M.A.: Length-scale effects on nano-scale materials behaviour. University of Illinois Urbana-Champaign (2002)

  22. Zhu, Y.; Espinosa, H.D.: An electromechanical material testing system for in situ electron microscopy and applications. Proc. Natl. Acad. Sci. 102(41), 14503–14508 (2005)

    Article  Google Scholar 

  23. Abbas, K., et al.: Nanoscale size effects on the mechanical properties of platinum thin films and cross-sectional grain morphology. J. Micromech. Microeng. 26(1), 015007 (2015). https://doi.org/10.1088/0960-1317/26/1/015007

    Article  Google Scholar 

  24. Li, C.; Cheng, G.; Wang, H.; Zhu, Y.: Microelectromechanical systems for nanomechanical testing: displacement- and force-controlled tensile testing with feedback control. Exp. Mech. 60(7), 1005–1015 (2020). https://doi.org/10.1007/s11340-020-00619-z

    Article  Google Scholar 

  25. Mousavi, B.K.; Mousavi, A.K.; Hieber, T.J.; Chen, J.; Leseman, Z.C.: Mode II adhesion energy analysis of stiction-failed poly-Si μ cantilevers using a MEMS load cell. J. Micromech. Microeng. 29(7), 075013 (2019). https://doi.org/10.1088/1361-6439/ab173e

    Article  Google Scholar 

  26. Li, C.; Zhang, D.; Cheng, G.; Zhu, Y.: Microelectromechanical systems for nanomechanical testing: electrostatic actuation and capacitive sensing for high-strain-rate testing. Exp. Mech. 60(3), 329–343 (2020). https://doi.org/10.1007/s11340-019-00565-5

    Article  Google Scholar 

  27. Taylor, P.; Molloy, J.E.; Padgett, M.J.: Lights, action: optical tweezers. Contemp. Phys. (2012). https://doi.org/10.1080/0010751011011605

    Article  Google Scholar 

  28. Hart’Anský, R., et al.: Novel method of contactless sensing of mechanical quantities. Meas. Sci. Rev. 20(3), 150–156 (2020). https://doi.org/10.2478/msr-2020-0018

    Article  Google Scholar 

  29. Bell, D.J.; Lu, T.J.; Fleck, N.A.; Spearing, S.M.: MEMS actuators and sensors: observations on their performance and selection for purpose. J. Micromech. Microeng. (2005). https://doi.org/10.1088/0960-1317/15/7/022

    Article  Google Scholar 

  30. Zhang, X.; Ma, L.; Zhang, Y.: High-resolution optical tweezers for single- molecule manipulation. Yale J. Biol. Med. 86(3), 367–383 (2013)

    Google Scholar 

  31. Sattler, K.D. (ed.): Handbook of Nanophysics: Principles and Methods. CRC Press, Boca Raton (2010)

    Google Scholar 

  32. Panwar, A.S.; Singh, A.; Sehgal, S.: Material characterization techniques in engineering applications: a review. Mater. Today Proc. 28, 1932–1937 (2020). https://doi.org/10.1016/j.matpr.2020.05.337

    Article  Google Scholar 

  33. Gheith, M.H., et al.: Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. J. Mater. Res. Technol. 8(1), 853–860 (2019). https://doi.org/10.1016/j.jmrt.2018.06.013

    Article  Google Scholar 

  34. Dror, R.O.; Jensen, M.; Borhani, D.W.; Shaw, D.E.: Perspectives on: Molecular dynamics and computational methods Exploring atomic resolution physiology on a femtosecond to millisecond timescale using molecular dynamics simulations. J. Gen. Physiol. 135(6), 555–562 (2010). https://doi.org/10.1085/jgp.200910373

    Article  Google Scholar 

  35. Robertson, I.M., et al.: Towards an integrated materials characterization toolbox. J. Mater. Res. 26(11), 1341–1383 (2011). https://doi.org/10.1557/jmr.2011.41

    Article  Google Scholar 

  36. Nichols, E.F.; Hull, G.F.: The pressure due to radiation author (s): Nichols, E.F.; Hull, G.F. Hull reviewed work (s): Source: Proceedings of the American Academy of Arts and Sciences, Vol. 38, No. 20 (April, Published by: American Academy of Arts & Sciences Stable URL). Proc. Am. Acad. Arts Sci. 38(20), 559 (1903)

  37. Gordon, J.P.; Zeiger, H.J.; Townes, C.H.: The maser-new type of microwave amplifier, frequency standard, and spectrometer. Phys. Rev. 99(4), 1264–1274 (1955). https://doi.org/10.1103/PhysRev.99.1264

    Article  Google Scholar 

  38. Maiman, T.H.: Stimulated optical radiation in ruby. Nature 187(4736), 493–494 (1960). https://doi.org/10.1038/187493a0

    Article  Google Scholar 

  39. Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24(4), 156–159 (1970). https://doi.org/10.1103/PhysRevLett.24.156

    Article  Google Scholar 

  40. Ashkin, A.; Dziedzic, J.M.; Bjorkholm, J.E.; Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Angular Momentum 11(5), 196–198 (2016). https://doi.org/10.1364/ol.11.000288

    Article  Google Scholar 

  41. Hecht, E.: Optics, 4th edn. Addison Wesley, San Francisco (2002)

    Google Scholar 

  42. Mahrle, A.; Beyer, E.: Theoretical evaluation of radiation pressure magnitudes and effects in laser material processing. Phys. Scr. (2019). https://doi.org/10.1088/1402-4896/ab04c3

    Article  Google Scholar 

  43. MacLeod, H.A.: Thin Film Optical Filters. IOP Publishing, Bristol (2003)

    Google Scholar 

  44. Yang, M.; Gatto, A.; Kaiser, N.: Optical thin films with high reflectance, low thickness and low stress for the spectral range from vacuum UV to near IR. J. Opt. A Pure Appl. Opt. 8, 327–332 (2006)

    Article  Google Scholar 

  45. Wagner, R.; Guzman, F.; Chijioke, A.; Gulati, G.K.; Keller, M.; Shaw, G.: Direct measurement of radiation pressure and circulating power inside a passive optical cavity. Opt. Express 26(18), 23492 (2018). https://doi.org/10.1364/oe.26.023492

    Article  Google Scholar 

  46. Ando, T.: High-speed AFM imaging. Curr. Opin. Struct. Biol. 28(1), 63–68 (2014). https://doi.org/10.1016/j.sbi.2014.07.011

    Article  Google Scholar 

  47. Chary, K.V.R.; Srivastava, A.K.: Encyclopedia of Biophysics (2013)

  48. Braunsmann, C.; Prucker, V.: Optical knife-edge displacement sensor for high-speed atomic force microscopy. Appl. Phys. Lett. 104(10), 1–5 (2014). https://doi.org/10.1063/1.4868043

    Article  Google Scholar 

  49. Frisch-Fay, R.: Flexible Bars. Butterworths, New York (1962)

    MATH  Google Scholar 

  50. Pulavarthy, R.A.; Alam, M.T.; Haque, M.A.: Effect of heated zone size on micro and nanoscale convective heat transfer ☆. Int. Commun. Heat Mass Transf. 52, 56–60 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.01.016

    Article  Google Scholar 

  51. Alaie, S.; Goettler, D.F.; Su, M.; Leseman, Z.C.; Reinke, C.M.; El-Kady, I.: Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature. Nat. Commun. 6, 7228 (2015). https://doi.org/10.1038/ncomms8228

    Article  Google Scholar 

  52. Alaie, Z.C.L.S.; Goettler, D.; Abbas, K.; El-Kadi, I.: Measurement of in-plane thermal conductivity using suspended SiNX Islands. IMECE2012. ASME, Houston, Texas, vol. 9, pp. 611–616 (2012)

  53. Abbas, K.; Alaie, S.; Leseman, Z.C.: Design and characterization of a low temperature gradient and large displacement thermal actuators for in situ mechanical testing of nanoscale materials. J. Micromech. Microeng. (2012). https://doi.org/10.1088/0960-1317/22/12/125027

    Article  Google Scholar 

  54. Pantano, M.F.; Calusi, B.; Mazzolai, B.; Espinosa, H.D.; Pugno, N.M.: Load sensor instability and optimization of MEMS-based tensile testing devices. Front. Mater. 6(July), 1–8 (2019). https://doi.org/10.3389/fmats.2019.00161

    Article  Google Scholar 

Download references

Acknowledgements

ZCL acknowledges support provided by the Deanship of Scientific Research at King Fahd University of Petroleum & Minerals for funding this work through Project SR191001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zayd C. Leseman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leseman, Z.C. Design of a Microscale Optomechanical Load Cell for Micro-/Nanostructured Materials Testing Applications. Arab J Sci Eng 47, 1053–1067 (2022). https://doi.org/10.1007/s13369-021-06019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06019-2

Keywords

Navigation