Skip to main content
Log in

Dynamic Characteristics of Strongly Coupled Nonideal Plasmas

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) strongly coupled nonideal plasma systems (SC-NIPSs) are modeled using equilibrium molecular dynamics (EMD) simulations. The dynamical structure factor (DSF) has been investigated under influence of varying wave vectors (k = 2π/L) at high Debye screening (κ) and varying Coulomb couplings (Γ) from nonideal phase to strongly coupled phase. New outcomes of dust DSF S(k,ω) indicate that the frequency of oscillation increases and amplitude decreases with an increase in Γ, respectively, for the SC-NIPSs. The present work shows that the amplitude of dust DSF slightly increases with increasing κ and N, and it also depends on variation of wave vectors. Our investigations demonstrate that the amplitude of oscillation of the dust DSF is changed and shape of spectrum switches from damped oscillation mode to sinusoidal mode with an increase in Γ. These modes of oscillation of dust DSF S(k,ω) shift to higher Γ with increasing κ and N. It has been revealed that the fluctuating density S(k,ω) of dust more oscillates at high Γ and midway value of κ, but this oscillation is less pronounced at high N and κ. The reported simulation data are found to have more precise and well-organized than that of earlier known numerical outcomes and it provides reasonable EMD outcomes with suitable varying N at high screening and large values of Γ than earlier numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data available on request from the authors: The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Shahzad, A.; Shakoori, M.A.; He, M.-G.; Yang, F.: Dynamical structure factor of Complex plasmas for varying wave vectors. Phys. Plasmas 26, 023704 (2019)

    Article  Google Scholar 

  2. Shahzad, A.; Shakoori, M. A.; He, M.-G.; Yang, F.: Numerical Approach to Dynamical Structure Factor of Dusty Plasmas, Chp. 7, In: Plasma Science and Technology-Basic Fundamentals and Modern Applications (InTech, London, 2019)

  3. Moldabekov, Zh.A.; Kählert, H.; Dornheim, T.; Groth, S.; Bonitz, M.; Ramazanov, T.S.: Dynamical structure factor of strongly coupled ions in a dense quantum plasma. Phys. Rev. E 99, 053203 (2019)

    Article  Google Scholar 

  4. Enciso, E.; Almarza, N.G.; del Prado, V.; Bermejo, F.J.; López, E.Z.; Ujaldón, M.: Molecular-dynamics simulation on simple fluids: departure from linearized hydrodynamic behavior of the dynamical structure factor. Phys. Rev. E 50, 1336 (1994)

    Article  Google Scholar 

  5. Mabey, P.; Richardson, S.; White, T.G.; Fletcher, L.B.; Glenzer, S.H.; Hartley, N.J.; Vorberger, J.; Gericke, D.O.; Gregori, G.: A strong diffusive ion mode in dense IONIZED matter predicted by Langevin dynamics. Nat. Commun. 8, 14125 (2017)

    Article  Google Scholar 

  6. Vorberger, J.; Donko, Z.; Tkachenko, I.M.; Gericke, D.O.: Dynamic ion structure factor of warm dense matter. Phys. Rev. Lett. 109, 225001 (2012)

    Article  Google Scholar 

  7. Glenzer, S.H.; Redmer, R.: X-ray Thomson scattering in high energy density plasmas. Rev. Mod. Phys. 81, 1625–1663 (2009)

    Article  Google Scholar 

  8. Shahzad, A.; He, M.-G.: Structural order and disorder in strongly coupled Yukawa liquids. Phys. Plasmas 23, 093708 (2016)

    Article  Google Scholar 

  9. Shahzad, A.; He, M.-G.: Numerical experiment of thermal conductivity in two-dimensional Yukawa liquids. Phys. Plasmas 22, 123707 (2015)

    Article  Google Scholar 

  10. Shahzad, A.; He, M.-G.: Shear viscosity and diffusion motion of two-dimensional dusty plasma liquids. Phys. Scr. 86, 015502 (2012)

    Article  Google Scholar 

  11. Gregori, G.; Glenzer, S.H.; Landen, O.L.: Generalized x-ray scattering cross section from nonequilibrium plasmas. Phys. Rev. E 74, 6402 (2006)

    Article  Google Scholar 

  12. Valenzuela, J.C.; Krauland, C.; Mariscal, D.; Krasheninnikov, I.; Niemann, C.; Ma, P.; Mabey, T.; Gregori, G.; Wiewior, P.; Covington, A.M.; Beg, F.N.: Measurement of temperature and density using non-collective X-ray Thomson scattering in pulsed power produced warm dense plasmas. Sci. Rep. 8, 8432 (2018)

    Article  Google Scholar 

  13. Alley, W.E.; Alder, B.J.; Sidney, Y.: The neutron scattering function for hard spheres. Phys. Rev. A 27, 3174 (1983)

    Article  Google Scholar 

  14. White, T.G.; Richardson, S.; Crowley, B.J.B.; Pattison, L.K.; Harris, J.W.O.; Gregori, G.: Orbital-free density-functional theory simulations of the dynamic structure factor of warm dense aluminum. Phys. Rev. Lett. 111, 175002 (2013)

    Article  Google Scholar 

  15. Daligault, J.; Murillo, M.S.: Dynamic form factor of two-component plasmas beyond the static local field approximation. J. Phys. A: Math. Gen. 36, 6265 (2003)

    Article  Google Scholar 

  16. Redmer, R.; Reinholz, H.; Ropke, G.; Thiele, R.; Holl, A.: Theory of X-ray Thomson scattering in dense plasmas. IEEE Trans. Plasma Sci. 33, 77–84 (2005)

    Article  Google Scholar 

  17. Arkhipov, Yu.V.; Askaruly, A.; Davletov, A.E.; Dubovtsev, DYu.; Donko, Z.; Hartmann, P.; Korolov, I.; Conde, L.; Tkachenko, I.M.: Direct determination of dynamic properties of coulomb and Yukawa classical one-component plasmas. Phys. Rev. Lett. 119, 5001 (2017)

    Article  Google Scholar 

  18. Adamjan, S.V.; Meyer, T.; Tkachenko, I.M.: OCP Dynamical Structure Factor and the Plasma Dispersion: Method of Moments. Contrib. Plasma Phys. 29, 373–375 (1989)

    Article  Google Scholar 

  19. Takeno, S.; Yoshida, F.: Dynamical Structure Factor and Collective Modes in Classical One-Component Plasmas. Progress Theoret. Phys. 62, 883–900 (1979)

    Article  Google Scholar 

  20. Balucani, U.; Zoppi, M.: Dynamics of the Liquid State. OUP, Oxford (2002)

    Google Scholar 

  21. Donko, Z.; Hartmann, Z.P.; Kalman, G.J.; Golden, K.I.: Dynamical structure functions for charged particle bilayers and superlattices. J. Phys. A: Math. Gen. 36, 5877 (2003)

    Article  Google Scholar 

  22. Donko, Z.; Kalman, G.J.; Hartmann, P.: Dynamical correlations and collective excitations of Yukawa liquids. J. Phys. Condens. Matter 20, 3101 (2008)

    Article  Google Scholar 

  23. Schoen, M.; Vogelsang, R.; Hoheisel, C.: Computation and analysis of the dynamic structure factor S(k, ω) for small wave vectors. Mol. Phys. 57, 445–471 (1986)

    Article  Google Scholar 

  24. de Schepper, I.M.; Cohen, E.G.D.; Bruin, C.; van Rijs, J.C.; Montfrooij, W.; de Graaf, L.A.: Hydrodynamic time correlation functions for a Lennard-Jones fluid. Phys. Rev. A 38, 271 (1988)

    Article  Google Scholar 

  25. Gurtubay, I.G.; Pitarke, J.M.; Campillo, I.; Rubio, A.: Dynamic structure factor of gold. Comput. Mater. Sci. 22, 123–128 (2001)

    Article  Google Scholar 

  26. Korolov, I.; Kalman, G.J.; Silvestri, L.; Donko, Z.: The dynamical structure function of the one-component plasma revisited. Contrib. Plasma Phys. 55, 421–427 (2015)

    Article  Google Scholar 

  27. Desbiens, N.; Arnault, P.; Clerouin, J.: Parametrization of pair correlation function and static structure factor of the one component plasma across coupling regimes. Phys. Plasmas 23, 092120 (2016)

    Article  Google Scholar 

  28. Harbour, L.; Forster, G.D.; Dharma-Wardana, M.W.C.; Lewis, J.L.: Ion-ion dynamic structure factor, acoustic modes, and equation of state of two-temperature warm dense aluminum. Phys. Rev. E 97, 043210 (2018)

    Article  Google Scholar 

  29. Magyar, P.; Hartmann, P.; Kalman, G.J.; Golden, K.I.; Donko, Z.: Factorization of 3-point static structure functions in 3D Yukawa liquids. Contrib. Plasma Phys. 56, 816–829 (2016)

    Article  Google Scholar 

  30. Saiz, E. Ga.; Gregori, G.; Khattak, F. Y.; Kohanoff, J.; Sahoo, S.; Shabbir, N.; Bandyopadhyay, S.; Notley, M.; Weber, R. L.; Riley, D.: Evidence of Short-Range Screening in Shock-Compressed Aluminum Plasma. Phys. Rev. Lett. 101, 075003 (2008)

  31. Faustlin, R. R.; Bornath, T.; Doppner, T.; Dusterer, S.; Forster, E.; Fortmann, C.; Glenzer, S. H.; Gode, S.; Gregori, G.; Irsig, R.; Laarmann, T.; Lee, H. J.; Li, B.; Meiwes-Broer, K. H.; Mithen, J.; Nagler, B.; Przystawik, A.; Redlin, H.; Redmer, R.; Reinholz, H.; Ropke, G.; Tavella, F.; Thiele, R.; Tiggesbaumker, J.; Toleikis, S.; Uschmann, I.; Vinko, S. M.; Whitcher, T.; Zastrau, U.; Ziaja B.; Tschentscher, T.: Observation of Ultrafast Nonequilibrium Collective Dynamics in Warm Dense Hydrogen. Phys. Rev. Lett. 104, 125002 (2010)

  32. Sheffield, J.; Froula, D.; Siegfried, H.; Neville, C.G.: Luhmann. Plasma Scattering of Electromagnetic Radiation (London, Academic Press, Jr. (2010)

    Google Scholar 

  33. Shahzad, A.; Shakoori, M. A.; He, M.-G.: Wave Spectra in Dusty Plasmas of Nuclear Fusion Devices, In: Fusion Energy (InTech, London, 2020)

  34. Shahzad, A.; He, M.-G.; Haider, S. I.; Feng, Y.: Studies of force field effects on thermal conductivity of complex plasmas. Phys. Plasmas 24, 093701 (2017)

  35. Shahzad, A.; Haider, S.I.; Kashif, M.; Shifa, M.S.; Munir, T.; He, M.-G.: Thermal Conductivity of Complex Plasmas Using Novel Evan-Gillan Approach. Commun. Theor. Phys. 69, 704–710 (2018)

    Article  Google Scholar 

  36. Shahzad, A.; He, M.-G.; Kai, H.: Diffusion motion of two-dimensional weakly coupled complex (dusty) plasmas. Phys. Scr. 87, 035501 (2013)

  37. Shahzad, A.; He, M.-G.: Thermodynamic Characteristics of Dusty Plasma Studied by Using Molecular Dynamics Simulation. Plasma Sci. Technol. 14, 771 (2012)

    Article  Google Scholar 

  38. Sen, A.; Harris, E.G.: Damping of plasma oscillations in atoms. Phy. Rev. A 3, 1815–1819 (1971)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially sponsored by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51721004). We are grateful to the National Advanced Computing Center of National Center of Physics (NCP), Pakistan, for allocating computer time to test and run our MD code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Shahzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzad, A., Manzoor, A., Wang, W. et al. Dynamic Characteristics of Strongly Coupled Nonideal Plasmas. Arab J Sci Eng 47, 957–969 (2022). https://doi.org/10.1007/s13369-021-05954-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05954-4

Keywords

Navigation