Skip to main content
Log in

Impacts of Viscous Dissipation and Thermal Radiation on Rabinowitsch Fluid Model Obeying Peristaltic Mechanism with Wall Properties

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This exploration intends to focus on the impacts of viscous dissipation and thermal radiation on the peristaltic transport of the Rabinowitsch fluid model through a non-uniform inclined tube. Velocity and convective slip impacts are imposed at the walls of the tube. The lubrication approach is utilized to simplify the normalized constitutive equations. The exact outcomes are estimated for the velocity, temperature, and stream function. The impacts of diverse parameters on flow quantities are deliberated and featured through graphs. It is established that the Brickman number communicates to the viscous dissipation impacts; therefore, it helps to raise the liquid temperature in all situations. The higher values of rigidity and stiffness parameters enhanced the number of streamlines because of the liquid circulation for shear thickening case, but it has an opposite trend for the viscous damping force parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(\bar{r},\bar{z}\) :

Radial and axial direction in the wave frame

\(\bar{u},\bar{v}\) :

Fluid velocity along \(\bar{r}\) and \(\bar{z}\) directions

\(\bar{p}\) :

Pressure in the wave motion

P :

Pressure in laboratory motion

c :

Wave speed

\(\bar{p}\) :

Time

\(C^{\prime }\) :

Coefficient of viscous damping force

\(\bar{T}\) :

Temperature

\(\bar{T}_{0}\) :

Constant wall temperature

w :

Dimensionless fluid velocity

α*:

Velocity slip parameter

\(l\left( {\bar{z}} \right)\) :

Radius of the non-uniform tube

m :

Mass per unit area

b :

Wave amplitude

Rd :

Radiation parameter

E 3 :

Viscous damping force parameter

E 2 :

Stifness parameter

k :

Non-uniform tube

\(\tau _{{\bar{r}\,\bar{z}}} ,\tau _{{\bar{z}\,\bar{z}}} ,\tau _{{\bar{r}\,\bar{r}}}\) :

Shear stress

Re:

Reynold’s number

Br :

Brickman number

E 1 :

Rigidity parameter

λ:

Wavelength

σ * :

Stephen Boltzmann constant

k * :

Mean absorption coefficient

c p :

Specific heat capacity

η d :

Heat transfer coefficient

k 1 :

Thermal conductivity

θ:

Dimensionless fluid temperature

ε :

Amplitude ratio

η :

Inclined angle

β :

Biot number

α :

Velocity slip parameter

γ :

Rabinwitsch fluid parameter

δ :

Dimensional less wave number

ρ :

Density

References

  1. Shapiro, A.H.; Jaffrin, M.Y.; Weinberg, S.L.: Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37(4), 799–825 (1969)

    Article  Google Scholar 

  2. Medhavi, A.: Peristaltic pumping of a non-Newtonian fluid. Applic. and Appl. Math. 3, 137–148 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Akbar, Y.; Abbasi, F.M.: Impact of variable viscosity on peristaltic motion with entropy generation. Int. Commun. Mass Transfer 118, 104826 (2020)

    Article  Google Scholar 

  4. Hayat, T.; Nisar, Z.; Alsaedi, A.: Impacts of slip in radiative MHD peristaltic flow of fourth grade nanomaterial with chemical reaction. Int. Commun. Mass Transfer 119, 104976 (2020)

    Article  Google Scholar 

  5. Vaidya, H.; Rajashekhar, C.; Divya, B.B.; Manjunatha, G.; Prasad, K.V.; Animasaun, I.L.: Influence of transport properties on the peristaltic MHD Jeffrey fluid flow through a porous asymmetric tapered channel. Results Phys. 18, 103295 (2020)

    Article  Google Scholar 

  6. Hayat, T.; Nisar, Z.; Ahmad, B.; Yasmin, H.: Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating. J. Magn. Magn. Mater. 395, 48–58 (2015)

    Article  Google Scholar 

  7. Bhatti, M.M.; Abbas, M.A.; Rashidi, M.M.: Combine effects of Magnetohydrodynamics (MHD) and partial slip on peristaltic Blood flow of Ree-Eyring fluid with wall properties. Eng. Sci. Technol. Int. J. 19(3), 1497–1502 (2016)

    Google Scholar 

  8. Hayat, T.; Saleem, A.; Tanveer, A.; Alsaadi, F.: Numerical study for MHD peristaltic flow of Williamson nanofluid in an endoscope with partial slip and wall properties. Int. J. Heat Mass Transf. 114, 1181–1187 (2017)

    Article  Google Scholar 

  9. Eldesoky, I.M.; Abumandour, R.M.; Abdelwahab, E.T.: Analysis for various effects of relaxation time and wall properties on compressible Maxwellian peristaltic slip flow. Zeitschrift für Naturforschung A. 74(4), 317–331 (2019)

    Article  Google Scholar 

  10. Nisar, Z.; Hayat, T.; Alsaedi, A.; Ahmad, B.: Wall properties and convective conditions in MHD radiative peristalsis flow of Eyring-Powell nanofluid. J. Therm. Anal. Calorim. 144, 1199–1208 (2021)

    Article  Google Scholar 

  11. Sinhasan, R.; Sah, P.L.: Static and dynamic performance characteristics of an orifice compensated hydrostatic journal bearing with non-Newtonian lubricants. Tribol. Int. 29(6), 515–526 (1996)

    Article  Google Scholar 

  12. Singh, U.P.; Gupta, R.S.; Kapur, V.K.: On the steady performance of hydrostatic thrust bearing: Rabinowitsch fluid model. Tribol. Trans. 54(5), 723–729 (2011)

    Article  Google Scholar 

  13. Lin, J.R.: Non-Newtonian squeeze film characteristics between parallel annular disks: Rabinowitsch fluid model. Tribol. Int. 52, 190–194 (2012)

    Article  Google Scholar 

  14. Sadaf, H.; Nadeem, S.: Analysis of combined convective and viscous dissipation effects for peristaltic flow of Rabinowitsch fluid model. J. Bionic Eng. 14(1), 182–190 (2017)

    Article  Google Scholar 

  15. Rajashekhar, C.; Vaidya, H.; Prasad, K.V.; Tlili, I.; Patil, A.; Nagathan, P.: Unsteady flow of Rabinowitsch fluid peristaltic transport in a non-uniform channel with temperature-dependent properties. Alex. Eng. J. (2020). https://doi.org/10.1016/j.aej.2020.08.036

    Article  Google Scholar 

  16. Imran, N.; Javed, M.; Sohail, M.; Tlili, I.: Simultaneous effects of heterogeneous-homogeneous reactions in peristaltic flow comprising thermal radiation: Rabinowitsch fluid model. J. Market. Res. 9(3), 3520–3529 (2020)

    Google Scholar 

  17. Lin, J.R.; Chu, L.M.; Hung, T.C.; Wang, P.Y.: Derivation of two-dimensional non-Newtonian Reynolds equation and application to power-law film slider bearings: Rabinowitsch fluid model. Appl. Math. Model. 40(19–20), 8832–8841 (2016)

    Article  MathSciNet  Google Scholar 

  18. Chu, Y.M.; Nazeer, M.; Khan, M.I.; Ali, W.; Zafar, Z.; Kadry, S.; Abdelmalek, Z.: Entropy analysis in the Rabinowitsch fluid model through inclined Wavy Channel: Constant and variable properties. Int. Commun. Heat Mass Transfer 119, 104980 (2020)

    Article  Google Scholar 

  19. Hayat, T.; Nawaz, S.; Alsaedi, A.; Fardoun, H.M.: Entropy optimization for peristalsis of Rabinowitsch nanomaterial. Appl. Nanosci. 10(11), 4177–4190 (2020)

    Article  Google Scholar 

  20. Sunitha, G.: Influence of thermal radiation on peristaltic blood flow of a Jeffrey fluid with double diffusion in the presence of gold nanoparticles. Inform. Med. Unlocked 17, 100272 (2019)

    Article  Google Scholar 

  21. Prakash, J.; Siva, E.P.; Tripathi, D.; Kothandapani, M.: Nanofluids flow driven by peristaltic pumping in occurrence of magnetohydrodynamics and thermal radiation. Mater. Sci. Semicond. Process. 100, 290–300 (2019)

    Article  Google Scholar 

  22. Ibrahim, M.G.; Hasona, W.M.; ElShekhipy, A.A.: Concentration-dependent viscosity and thermal radiation effects on MHD peristaltic motion of Synovial Nanofluid: applications to rheumatoid arthritis treatment. Comput. Methods Programs Biomed. 170, 39–52 (2019)

    Article  Google Scholar 

  23. Farooq, S.; Khan, M.I.; Waqas, M.; Hayat, T.; Alsaedi, A.: Transport of hybrid type nanomaterials in peristaltic activity of viscous fluid considering nonlinear radiation, entropy optimization and slip effects. Computer Methods Programs Biomed. 184, 105086 (2020)

    Article  Google Scholar 

  24. Rosseland, S.: Astrophysik und Atom-Theoretische Grundlagen, p. 41–44. Springer, Berlin (1931)

    Book  Google Scholar 

  25. Asha, S. K. and Sunitha, G.:Thermal radiation and Hall effects on peristaltic blood flow with double diffusion in the presence of nanoparticles, Case Studies in Thermal Engineering. 17, 100560 (2020)

  26. Asha, S.K.; Deepa, C.K.: Entropy generation for peristaltic blood flow of a magneto-micropolar fluid with thermal radiation in a tapered asymmetric channel. Results Eng. 3, 100024 (2019)

    Article  Google Scholar 

  27. Subadra, N.; Srinivas, M.A.S.: Study of peristaltic motion of nano particles of a micropolar fluid with heat and mass transfer effect in an inclined tube. Procedia Eng. 127, 694–702 (2015)

    Article  Google Scholar 

  28. Nadeem, S.: Single wall carbon nanotube (SWCNT) analysis on peristaltic flow in an inclined tube with permeable walls. Int. J. Heat Mass Transf. 97, 794–802 (2016)

    Article  Google Scholar 

  29. Iftikhar, N.; Rehman, A.; Sadaf, H.; Khan, M.N.: Impact of wall properties on the peristaltic flow of Cu-water nano fluid in a non-uniform inclined tube. Int. J. Heat Mass Transf. 125, 772–779 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Abbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiq, M.Y., Abbas, Z. Impacts of Viscous Dissipation and Thermal Radiation on Rabinowitsch Fluid Model Obeying Peristaltic Mechanism with Wall Properties. Arab J Sci Eng 46, 12155–12163 (2021). https://doi.org/10.1007/s13369-021-05870-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05870-7

Keywords

Navigation