Skip to main content
Log in

Entropy optimization for peristalsis of Rabinowitsch nanomaterial

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

This work models new formulation for peristaltic activity of Rabinowitsch material in a compliant walls channel. Energy equation is accounted in the presence of viscous dissipation and heat source/sink. Chemical reaction is included in concentration expression. Nanomaterial characteristics are due to Brownian motion and thermophoresis. Slip condition is utilized for velocity, temperature and concentration. Exact solution is obtained for velocity. Further NDSolve is utilized for the graphical analysis of temperature, concentration, entropy and heat transfer coefficient at the wall. Results are also analyzed for viscous, shear thickening and shear thinning fluids. This study reveals the results that the shear thinning fluids move with greater velocity than the viscous and shear thickening fluids. Similarly, temperature and entropy generation also has higher values for shear thinning case when compared with others. Further heat source parameter enhances the temperature, whereas sink parameter leads to decay. Slip parameter for velocity and temperature caused an increase in the respective velocity and temperature. Moreover, chemical reaction parameter leads to enhancement in temperature and entropy generation in case of viscous, shear thickening and shear thinning fluids. However, shear thinning fluids are found prominent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  • Abbasi FM, Gul M, Shehzad SA (2018) Hall effects on peristalsis of boron nitride-ethylene glycol nanofluid with temperature dependent thermal conductivity. Physica E 99:275–284

    CAS  Google Scholar 

  • Abbasi FM, Shanakhat I, Shehzad SA (2019) Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J Magn Magn Mater 474:434–441

    CAS  Google Scholar 

  • Akbar NS (2015) Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field. Energy 82:23–30

    Google Scholar 

  • Akbari OA, Safaei MR, Goodarzi M, Akbar NS, Zarringhalam M, Shabani GAS, Dahari M (2016a) A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube. Adv Powder Technol 27:2175–2185

    CAS  Google Scholar 

  • Akbari O, Toghraie D, Karimipour A, Safaei MR (2016b) Investigation of rib’s height effect on heat transfer and flow parameters of laminar water-Al2O3 nanofluid in a ribmicrochannel. Appl Math Comp 290:135–153

    Google Scholar 

  • Ali M, Sultan F, Khan WA, Shahzad M (2019) Exploring the physical aspects of nanofluid with entropy generation. Appl Nanosci. https://doi.org/10.1007/s13204-019-01173-4

    Article  Google Scholar 

  • Alrashed AAAA, Akbari OA, Heydari A, Toghraie D, Zarringhalam M, Shabani GAS, Seifi AR, Goodarzi M (2018a) The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel. Phys B 537:176–183

    CAS  Google Scholar 

  • Alrashed AAAA, Gharibdousti MS, Goodarzi M, Oliveira L (2018b) Effects on thermophysical properties of carbon based nanofluids: experimental data, modelling using regression, ANFIS and ANN. Int J Heat Mass Trans. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.142

    Article  Google Scholar 

  • Bahiraei M, Jamshidmofid M, Goodarzi M (2019) Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J Mol Liqs 273:88–98

    CAS  Google Scholar 

  • Bahmani MH, Sheikhzadeh GA, Zarringhalam M, Akbari O (2017) Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Adv Powder Techn. https://doi.org/10.1016/j.apt.2017.11.013

    Article  Google Scholar 

  • Bahrami M, Akbari M, Bagherzadeh SA, Karimipour A, Afrand M, Goodarzi M (2019) Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: measure MSEs between targets & ANN for Fe-CuO/Eg-Water nanofluid. Phys A 519:159–168

    CAS  Google Scholar 

  • Bashirnezhad K, Bazri S, Safaei MR, Goodarzi M, Dahari M, Mahian O, Dalklça A, Wongwises S (2016) Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Trans 73:114–123

    CAS  Google Scholar 

  • Bejan A (1980) Second law analysis in heat transfer. Energy 5:720–732

    Google Scholar 

  • Bejan A (1996) Entropy generation minimization: the method of thermodynamic optimization of finite-time systems and finite-time processes. CRC Press, New York

    Google Scholar 

  • Bhatti MM, Abbas MA (2016) Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium. Alex Eng J 55:1017–1023

    Google Scholar 

  • Bhatti MM, Zeeshan A, Ijaz N, Bég OA, Kadir A (2017) Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct. Eng Sci Technol Int J 20:1129–1139

    Google Scholar 

  • Buongiorno J (2005) Convective transport in nanofluids. ASME J Heat Transfer 128:240–250

    Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of the fluids with nanoparticles. ASME Fluids Eng Div 231:99–105

    CAS  Google Scholar 

  • Ghasemi A, Hassani M, Goodarzi M, Afrand M, Manafi S (2019) Appraising influence of COOH-MWCNTs on thermal conductivity of antifreeze using curve fitting and neural network. Phys A 514:36–45

    CAS  Google Scholar 

  • Goodarzi M, Amiri A, Goodarzi MS, Safaei MR, Karimipour A, Languri EM, Dahari M (2015) Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids. Int Commun Heat Mass Trans 66:172–179

    CAS  Google Scholar 

  • Goodarzi M, Kherbeet AS, Afrand M, Sadeghinezhad E, Mehrali M, Zahedi P, Wongwises S, Dahari M (2016) Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. Int Commun Heat Mass Trans 76:16–23

    CAS  Google Scholar 

  • Goodarzi M, D’Orazio A, Keshavarzi A, Mousavi S, Karimipour A (2018) Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: pure natural convection & mixed convection. Phys A 509:210–233

    CAS  Google Scholar 

  • Hayat T, Tanveer A, Yasmin H, Alsaedi A (2014) Effects of convective conditions and chemical reaction on peristaltic flow of Eyring-Powell fluid. Appl Bionics Biomech 11:221–233

    Google Scholar 

  • Hayat T, Nawaz S, Alsaedi A, Rafiq M (2016) Impact of second-order velocity and thermal slips in the mixed convective peristalsis with carbon nanotubes and porous medium. J Mol Liq 221:434–442

    CAS  Google Scholar 

  • Hayat T, Nawaz S, Alsaedi A (2017) Entropy generation in peristalsis with different shapes of nanomaterial. J Mol Liq 248:447–458

    CAS  Google Scholar 

  • Hayat T, Nawaz S, Alsaedi A, Ahmad B (2020a) Entropy analysis for the peristaltic flow of third grade fluid with variable thermal conductivity. Eur Phys J Plus 135:421. https://doi.org/10.1140/epjp/s13360-020-00421-9

    Article  CAS  Google Scholar 

  • Hayat T, Nawaz S, Alsaedi A (2020b) Entropy analysis for the peristalsis flow with homogeneous-heterogeneous reaction. Eur Phys J Plus 135:296. https://doi.org/10.1140/epjp/s13360-020-00293-z

    Article  Google Scholar 

  • Jyothi NN, Devaki P, Sreenadh S (2016) Analysis of magnetic field on the peristaltic transport of Johnson fluid in an inclined channel bounded by flexible walls. Int J Curr Res 8:26617–26634

    Google Scholar 

  • Latham TW (1966) Fluid motion in a peristaltic pump. MS Thesis, MIT, Cambridge

  • Manjunatha G, Rajashekhar C, Vaidya H, Prasad KV, Makinde OD (2019) Effects wall properties on peristaltic transport of rabinowitsch fluid through an inclined non-uniform slippery tube. Defect Diffusion Forum 392:138–157

    Google Scholar 

  • Nawaz S, Hayat T, Alsaedi A (2019) Analysis of entropy generation in peristalsis of Williamson fluid in curved channel under radial magnetic field. Commun Methods Prog Biomed 180:10501

    Google Scholar 

  • Nawaz S, Hayat T, Alsaedi A (2020) Numerical study for peristalsis of Sisko nanomaterials with entropy generation. J Therm Anal Calorim 139:2129–2143

    CAS  Google Scholar 

  • Pourmehran O, Sarafraz MM, Gorji MR, Ganji DD (2018) Rheological behaviour of various metal-based nano-fluids between rotating discs: a new insight. J Taiwan Inst Chem Eng 88:37–48

    CAS  Google Scholar 

  • Prakash J, Sharma A, Tripathi D (2018) Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J Mol Liqs 249:843–855

    CAS  Google Scholar 

  • Riaz A, Zeeshan A, Bhatti MM, Ellahi R (2020) Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium. Phys A 545:123788

    CAS  Google Scholar 

  • Sadaf H, Noreen S (2017) Analysis of combined convective and viscous dissipation effects for peristaltic flow of Rabinowitsch fluid model. J Bionic Eng 14:182–190

    Google Scholar 

  • Safaei MR, Shadloo MS, Goodarzi MS, Hadjadj A, Goshayeshi HR, Afrand M, Kazi SN (2016) A survey on experimental and numerical studies of convection heat transfer of nanofluids inside closed conduits. Adv Mech Eng 8:1–14

    CAS  Google Scholar 

  • Sarafaraz MM, Arjomandi M (2018a) Thermal performance analysis of a microchannel heat sink cooling with copper oxide-indium (CuO/In) nano-suspensions at high-temperatures. Appl Therm Eng 137:700–709

    Google Scholar 

  • Sarafaraz MM, Arjomandi M (2018b) Demonstration of plausible application of gallium nano-suspension in microchannel solar thermal receiver: experimental assessment of thermo-hydraulic performance of microchannel. Int Commun Heat Mass Trans 94:39–46

    Google Scholar 

  • Sarafraz MM, Hormozi F (2014a) Nucleate pool boiling heat transfer characteristics of dilute Al2O3-ethyleneglycol nanofluids. Int Commun Heat Mass Trans 58:96–104

    CAS  Google Scholar 

  • Sarafraz MM, Hormozi F (2014b) Experimental study on the thermal performance and efficiency of a copper made thermosyphon heat pipe charged with alumina-glycol based nanofluids. Powder Techn. 266:378–387

    CAS  Google Scholar 

  • Sarafraz MM, Hormozi F (2015) Intensification of forced convection heat transfer using biological nanofluid in a double-pipe heat exchanger. Exp Therm Fluid Sci 66:279–289

    CAS  Google Scholar 

  • Sarafraz M, Safaei MR (2019) Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension. Renewable Energy 142:364–372

    CAS  Google Scholar 

  • Sarafraz MM, Hormozi F, Kamalgharibi M (2014) Sedimentation and convective boiling heat transfer of CuO-water/ethylene glycol nanofluids. Heat Mass Transfer 50:1237–1249

    CAS  Google Scholar 

  • Sarafraz MM, Hormozi F, Peyghambarzadeh SM (2016) Pool boiling heat transfer to aqueous alumina nano-fluids on the plain and concentric circular micro-structured (CCM) surfaces. Exper Therm Fluid Sci 72:125–139

    CAS  Google Scholar 

  • Sarafraz MM, Arya A, Nikkhah V, Hormozia F (2017) Thermal performance and viscosity of biologically produced silver/coconut oil nanofluids. Chem Biochem Eng Quarterly J 30:489–500

    Google Scholar 

  • Sarafraz MM, Arya H, Saeedi M, Ahmadi D (2018) Flow boiling heat transfer to MgO-therminol 66 heat transfer fluid: experimental assessment and correlation development. Appl Therm Eng 138:552–562

    CAS  Google Scholar 

  • Sarafraz MM, Pourmehran O, Yang B, Arjomandi M (2019a) Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids. Renew Energy 136:884–895

    CAS  Google Scholar 

  • Sarafraz MM, Yang B, Pourmehran O, Arjomandi M, Ghomashchi R (2019b) Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel. Int Commun Heat Mass Trans 107:24–33

    CAS  Google Scholar 

  • Sarafraz MM, Pourmehran O, Yang B, Arjomandi M, Ellahi R (2020) Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. Int J Therm Sci 147:106131

    CAS  Google Scholar 

  • Sayed HM, Aly EH, Vajravelu K (2016) Influence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nanofluids in an inclined asymmetric channel. Alex Eng J 55:2209–2220

    Google Scholar 

  • Shapiro AH, Jafrin MY, Weinberg SL (1969) Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech 37:799–825

    Google Scholar 

  • Sheikholeslami M (2019) New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Commun Methods Appl Mech Eng 344:319–333

    Google Scholar 

  • Sheikholeslami M, Jafaryar M, Sheremet MA, Shafee A, Babazadeh H (2020) Nanomaterial thermal performance within a pipe in presence of turbulator. Appl Nanosci. https://doi.org/10.1007/s13204-020-01436-5

    Article  Google Scholar 

  • Shit GC, Ranjit NK (2016) Role of slip velocity on peristaltic transport of couple stress fluid through an asymmetric non-uniform channel: application to digestive system. J Mol Liq 221:305–315

    CAS  Google Scholar 

  • Tanveer A, Khan M, Salahuddin T, Malik MY (2019) Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid. Commun Methods Programs Biomed 180:105005

    Google Scholar 

  • Vaidya H, Rajashekhar C, Manjunatha G, Prasad KV (2019) Peristaltic mechanism of a Rabinowitsch fluid in an inclined channel with complaint wall and variable liquid properties. J Braz Soc Mech Sci Eng 41:52

    Google Scholar 

  • Vaidya H, Rajashekhar C, Manjunatha G, Prasad KV, Makinde OD, Vajravelu K (2020) Heat and mass transfer analysis of MHD peristaltic flow through a complaint porous channel with variable thermal conductivity. Phys Scr 95:045219

    CAS  Google Scholar 

  • Wada S, Hayashi H (1971) Hydrodynamic lubrication of journal bearings by pseudoplastic lubricants. Bulletin JSME 69:268–278

    Google Scholar 

  • Yasmeen S, Asghar S, Anjum HJ, Ehsan T (2019) Analysis of Hartmann boundary layer peristaltic flow of Jeffrey fluid: quantitative and qualitative approaches. Commun Nonlinear Sci Numer Simult 76:51–65

    Google Scholar 

  • Yin F, Fung YC (1969) Peristaltic waves in circular cylindrical tubes. J Appl Mech 36:579–587

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadaf Nawaz.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Nawaz, S., Alsaedi, A. et al. Entropy optimization for peristalsis of Rabinowitsch nanomaterial. Appl Nanosci 10, 4177–4190 (2020). https://doi.org/10.1007/s13204-020-01535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01535-3

Keywords

Navigation