Skip to main content

Advertisement

Log in

Comprehensive Assessment of Various Lignocellulosic Biomasses for Energy Recovery in a Hybrid Energy System

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The study presents a comprehensive assessment of various categories of lignocellulosic biomass for energy recovery by thorough compositional characterization, estimation of energy output in a hybrid energy system, and rating with respect to sustainability indicators. The woody biomass, (bamboo stem), was noted to have the highest carbon content of 44.41 ± 0.21% and a calorific value of 17.11 ± 0.18 MJ/kg. The least carbon content and calorific value were recorded for agricultural crop residue (rice straw). The order of specific energy output in the hybrid energy system was observed to be: woody biomass (bamboo stem) > non-woody biomass and among non-woody biomass, the order was: weed (cogon grass) > food processing waste (pineapple crown) > agricultural crop residue (rice straw). The specific energy output of 1.129 kWh/kg was recorded for woody biomass, bamboo stem. A life cycle assessment conducted to determine the overall sustainability and the environmental burdens associated with the energy recovery processes revealed that the agricultural crop residue (rice straw) had much higher overall sustainability (with a score of 10 out of 12) compared to the other biomass sources. Thus, for energy recovery in the biomass-based hybrid energy system, the woody biomass is favored in terms of energy recovery potential, whereas the agricultural crop residue with large abundance can be preferred as the sustainable biomass source. Thus, the comprehensive assessment presented in this study offers a holistic guide to choose the appropriate biomass and thereby establish biomass-based energy recovery as the energy solution for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A:

Ash

AP:

Acidification Potential

BAT:

Battery

BG:

Biomass-based electricity Generator

C:

Carbon

CO2 :

Carbon dioxide

CONV:

Converter

DCB:

Di- Chloro Benzene

DG:

Diesel-fueled electricity Generator

EP:

Eutrophication Potential

GCV:

Gross Calorific Value

GWP:

Global Warming Potential

H:

Hydrogen

HOMER:

Hybrid Optimization Model for Electric Renewables

HTP:

Human Toxicity Potential

ISO:

International Organization for Standardization

LCA:

Life Cycle Assessment

LCIA:

Life Cycle Impact Assessment

MC:

Moisture Content

O:

Oxygen

ODP:

Ozone Depletion Potential

OHES:

Off-grid Hybrid Energy System

PEI:

Potential Environmental Impacts

PV:

Photovoltaic cell

SC:

Stable Carbon

SO2 :

Sulfur dioxide

TETP:

Terrestrial and Eco Toxicity Potential

USD:

United States Dollar

US-LCA:

United States Life Cycle Assessment

VM:

Volatile Matter

References

  1. Rajarathnam, S.; Bano, Z.; Steinkraus, K.H.: Pleurotus mushrooms. Part III. Biotransformations of natural lignocellulosic wastes commercial applications and implications. Crit. Rev. Food Sci. Nutr 28, 31–113 (1989). https://doi.org/10.1080/10408398909527491

    Article  Google Scholar 

  2. Sartori, F.; Lal, R.; Ebinger, M.H.; Parrish, D.J.: Potential soil carbon sequestration and CO2 offset by dedicated energy crops in the USA. Crit. Rev. Plant Sci. 25, 441–472 (2006). https://doi.org/10.1080/07352680600961021

    Article  Google Scholar 

  3. Sher, F.; Pans, M.A.; Afilaka, D.T.; Sun, C.; Liu, H.: Experimental investigation of woody and non-woody biomass combustion in a bubbling fluidised bed combustor focusing on gaseous emissions and temperature profiles. Energy 141, 2069–2080 (2017). https://doi.org/10.1016/j.energy.2017.11.118

    Article  Google Scholar 

  4. Demirbas, A.: Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30, 219–230 (2004). https://doi.org/10.1016/j.pecs.2003.10.004

    Article  Google Scholar 

  5. García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L.: Characterization of Spanish biomass wastes for energy use. Biores. Technol. 103, 249–258 (2012). https://doi.org/10.1016/j.biortech.2011.10.004

    Article  Google Scholar 

  6. Roy, R.; Ray, S.: Effect of various pretreatments on energy recovery from waste biomass. Energy Sour., Part A Recovery, Util. Environ. Eff. (2019). https://doi.org/10.1080/15567036.2019.1680767

    Article  Google Scholar 

  7. Balat, M.: Mechanisms of thermochemical biomass conversion processes Part 3: reactions of liquefaction. Energy Sour., Part A Recovery, Util. Environ. Eff. 30, 649–659 (2008). https://doi.org/10.1080/10407780600817592

    Article  Google Scholar 

  8. Balat, M.; Balat, H.: Biogas as a renewable energy source—a review. Energy Sour., Part A: Recovery, Util. Environ. Eff. 31, 1280–1293 (2009). https://doi.org/10.1080/15567030802089565

    Article  Google Scholar 

  9. Safarian, S.; Unnthorsson, R.; Richter, C.: Performance analysis and environmental assessment of small-scale waste biomass gasification integrated CHP in Iceland. Energy (2020). https://doi.org/10.1016/j.energy.2020.117268

    Article  Google Scholar 

  10. Brynda, J.; Skoblia, S.; Pohořelý, M.; Beňo, Z.; Soukup, K.; Jeremiáš, M.; Moško, J.; Zach, B.; Trakal, L.; Šyc, M.; Svoboda, K.: Wood chips gasification in a fixed-bed multi-stage gasifier for decentralized high-efficiency CHP and biochar production: Long-term commercial operation. Fuel (2020). https://doi.org/10.1016/j.fuel.2020.118637

    Article  Google Scholar 

  11. Diyoke, C.; Wu, C.: Thermodynamic analysis of hybrid adiabatic compressed air energy storage system and biomass gasification storage (A-CAES+ BMGS) power system. Fuel (2020). https://doi.org/10.1016/j.fuel.2020.117572

    Article  Google Scholar 

  12. Grover, S; Kathuria, RS; Kaur, M.: Energy values and technologies for non woody biomass: as a clean source of energy. IOSR Journal of Electrical and Electronics Engineering 1, 10–14 (2012). ISSN: 2278–1676.

  13. Darmawan, A.; Fitrianto, A.C.; Aziz, M.; Tokimatsu, K.: Enhanced electricity production from rice straw. Energy Procedia 1, 271–277 (2017). https://doi.org/10.1016/j.egypro.2017.12.043

    Article  Google Scholar 

  14. Aziz, M.; Kurniawan, T.; Oda, T.; Kashiwagi, T.: Advanced power generation using biomass wastes from palm oil mills. Appl. Therm. Eng. 5, 1378–1386 (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.031

    Article  Google Scholar 

  15. Devi, G.S.; Vaishnavi, S.; Srinath, S.; Dutt, B.; Rajmohan, K.S.: Energy recovery from biomass using gasification. Curr. Dev. Biotechnol. Bioeng. (2020). https://doi.org/10.1016/B978-0-444-64321-6.00019-7

    Article  Google Scholar 

  16. García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L.: Biomass sources for thermal conversion. Techno-econ. overview. Fuel 1, 182–189 (2017). https://doi.org/10.1016/j.fuel.2017.01.063

    Article  Google Scholar 

  17. Rajbongshi, R.; Borgohain, D.; Mahapatra, S.: Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER. Energy 126, 461–474 (2017). https://doi.org/10.1016/j.energy.2017.03.056

    Article  Google Scholar 

  18. Ghenai, C.; Janajreh, I.: Design of solar-biomass hybrid microgrid system in Sharjah. Energy Procedia 1, 357–362 (2016). https://doi.org/10.1016/j.egypro.2016.11.299

    Article  Google Scholar 

  19. Debnath, D.; Ray, S.; Chakraborty, A.K.: Development of a statistical model for reliability analysis of hybrid off-grid power system (HOPS). Energ. Strat. Rev. 13, 213–221 (2016). https://doi.org/10.1016/j.esr.2016.10.002

    Article  Google Scholar 

  20. Srinivas, T.; Reddy, B.V.: Hybrid solar–biomass power plant without energy storage. Case Stud. Therm. Eng. 1, 75–81 (2014). https://doi.org/10.1016/j.csite.2013.12.004

    Article  Google Scholar 

  21. Kaur, K; Brar, GS.: Solar-biogas-biomass hybrid electrical power generation for a Village (a case study). International Journal of Engineering Development and Research 1–4(2016). ISSN: 2321–9939.

  22. Servert, J.; San; Miguel G; Lopez D. : Hybrid solar-biomass plants for power generation; Technical and economic assessment. Global NEST J. 13, 266–276 (2011)

    Google Scholar 

  23. Keoleian, G.A.; Volk, T.A.: Renewable energy from willow biomass crops: life cycle energy, environmental and economic performance. Crit. Rev. Plant Sci. 24, 385–406 (2005). https://doi.org/10.1080/07352680500316334

    Article  Google Scholar 

  24. Manouchehrinejad, M.; Sahoo, K.; Kaliyan, N.; Singh, H.; Mani, S.: Economic and environmental impact assessments of a stand-alone napier grass-fired combined heat and power generation system in the southeastern US. Int. J. Life Cycle Assess. 25, 89–104 (2020). https://doi.org/10.1007/s11367-019-01667-x

    Article  Google Scholar 

  25. Cardoso, J.S.; Silva, V.; Eusébio, D.; Azevedo, I.L.; Tarelho, L.A.: Techno-economic analysis of forest biomass blends gasification for small-scale power production facilities in the Azores. Fuel (2020). https://doi.org/10.1016/j.fuel.2020.118552

    Article  Google Scholar 

  26. Sharma, S.; Chua, Y.C.; Rangaiah, G.P.: Economic and environmental criteria and trade-offs for recovery processes. Mater. Manuf. Process. 26, 431–445 (2011). https://doi.org/10.1080/10426914.2010.544816

    Article  Google Scholar 

  27. Guinée, JB; Gorrée, M; Heijungs, R; Huppes, G; Kleijn, R; De Koning, A; Van Oers, L.: Life cycle assessment; An operational guide to the ISO standards; Parts 1 and 2. Ministry of housing, spatial planning and environment (VROM) and Centre of Environmental Science (CML), Den Haag and Leiden, The Netherlands. (2001).

  28. Roy, P.S.; Joshi, P.K.: Forest cover assessment in north-east India–the potential of temporal wide swath satellite sensor data (IRS-1C WiFS). Int. J. Remote Sens. 23, 4881–4896 (2002). https://doi.org/10.1080/01431160110114475

    Article  Google Scholar 

  29. Ingwersen, W.W.: Life cycle assessment of fresh pineapple from Costa Rica. J. Clean. Prod. 35, 152–163 (2012). https://doi.org/10.1016/j.jclepro.2012.05.035

    Article  Google Scholar 

  30. Rodenburg, J.; Johnson, D.E.: Weed management in rice-based cropping systems in Africa. Adv. Agron. 103, 149–218 (2009). https://doi.org/10.1016/S0065-2113(09)03004-1

    Article  Google Scholar 

  31. Singh, Y.D.; Mahanta, P.; Bora, U.: Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew. Energy 103, 490–500 (2017). https://doi.org/10.1016/j.renene.2016.11.039

    Article  Google Scholar 

  32. Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials (ASTM D4442–16).

  33. Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels (ASTM E872–82 (Reapproved 1998)).

  34. Standard Test Method for Ash in Biomass (ASTM E1755).

  35. Shen, J.; Zhu, S.; Liu, X.; Zhang, H.; Tan, J.: The prediction of elemental composition of biomass based on proximate analysis. Energy Convers. Manage. 51, 983–987 (2010). https://doi.org/10.1016/j.enconman.2009.11.039

    Article  Google Scholar 

  36. Standard Test Method for Gross Calorific Value of Coal and Coke (ASTM D5865–10a).

  37. Yao, F.; Wu, Q.; Lei, Y.; Guo, W.; Xu, Y.: Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 93, 90–98 (2008). https://doi.org/10.1016/j.polymdegradstab.2007.10.012

    Article  Google Scholar 

  38. Ray, S.; Debnath, D.; Chakraborty, A.K.: Cost Optimization of a Hybrid Off-Grid Power System for Remote Localities. Progress Clean Energy 2, 639–667 (2015). https://doi.org/10.1007/978-3-319-17031-2_46

    Article  Google Scholar 

  39. Debnath, D; Ray, S; Chakraborty, AK.: Cost and Reliability Analysis of Biomass Based Hybrid Power System as Alternative Energy Solution, Proceedings of International Conference on Advances in Chemical Engineering and Technology 224–229 (2014). ISBN: 9789351072843,

  40. Wang, M.; Xia, X.; Zhang, Q.; Liu, J.: Life cycle assessment of a rice production system in Taihu region, China. Int J Sust Dev World 17, 157–161 (2010). https://doi.org/10.1080/13504501003594224

    Article  Google Scholar 

  41. Lu, Y.; Wang, R.; Zhang, Y.; Su, H.; Wang, P.; Jenkins, A.; Ferrier, R.C.; Bailey, M.; Squire, G.: Ecosystem health towards sustainability. Ecosyst. Health Sustain. 1, 1–15 (2015). https://doi.org/10.1890/EHS14-0013.1

    Article  Google Scholar 

  42. Bhattacharya, S.C.: State of the art of biomass combustion. Energy Sour., Part A: Recovery, Util. Environ. Eff. 20, 113–135 (1998). https://doi.org/10.1080/00908319808970051

    Article  Google Scholar 

  43. Joglekar, S.N.; Tandulje, A.P.; Mandavgane, S.A.; Kulkarni, B.D.: Environmental impact study of bagasse valorization routes. Waste Biomass Valorization 10, 2067–2078 (2019). https://doi.org/10.1007/s12649-018-0198-9

    Article  Google Scholar 

  44. Shuaib, M.; Seevers, D.; Zhang, X.; Badurdeen, F.; Rouch, K.E.; Jawahir, I.S.: Product sustainability index (Prod SI) a metrics-based framework to evaluate the total life cycle sustainability of manufactured products. J. Ind. Ecol. 18, 491–507 (2014). https://doi.org/10.1111/jiec.12179

    Article  Google Scholar 

  45. Nanda, S.; Mohammad, J.; Reddy, S.N.; Kozinski, J.A.; Dalai, A.K.: Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers. Biorefinery 4, 157–191 (2014). https://doi.org/10.1007/s13399-013-0097-z

    Article  Google Scholar 

  46. Buah, W.K.; Cunliffe, A.M.; Williams, P.T.: Characterization of products from the pyrolysis of municipal solid waste. Process Saf. Environ. Prot. 85, 450–457 (2007). https://doi.org/10.1205/psep07024

    Article  Google Scholar 

  47. Rayón, E.; Ferrandiz, S.; Rico, M.I.; López, J.; Arrieta, M.P.: Microstructure, mechanical, and thermogravimetric characterization of cellulosic by-products obtained from biomass seeds. Int. J. Food Prop. 18, 1211–1222 (2015). https://doi.org/10.1080/10942912.2014.884578

    Article  Google Scholar 

  48. Khiari, B.; Jeguirim, M.; Limousy, L.; Bennici, S.: Biomass derived chars for energy applications. Renew. Sustain. Energy Rev. 108, 253–273 (2019). https://doi.org/10.1016/j.rser.2019.03.057

    Article  Google Scholar 

  49. Ingrao, C.; Rana, R.; Tricase, C.; Lombardi, M.: Application of Carbon Footprint to an agro-biogas supply chain in Southern Italy. Appl. Energy 149, 75–88 (2015). https://doi.org/10.1016/j.apenergy.2015.03.111

    Article  Google Scholar 

  50. Chemical elemental characteristics of biomass fuels in China: Cuiping L; Chuangzhi W; Yanyongjie, Haitao H. Biomass Bioenerg. 27, 119–130 (2004). https://doi.org/10.1016/j.biombioe.2004.01.002

    Article  Google Scholar 

  51. McKendry, P.: Energy production from biomass (part 2): conversion technologies. Biores. Technol. 83, 47–54 (2002). https://doi.org/10.1016/S0960-8524(01)00119-5

    Article  Google Scholar 

  52. Mohammadi, P.; Nikbakht, A.M.; Tabatabaei, M.; Farhadi, K.; Mohebbi, A.: Experimental investigation of performance and emission characteristics of DI diesel engine fueled with polymer waste dissolved in biodiesel-blended diesel fuel. Energy 46, 596–605 (2012). https://doi.org/10.1016/j.energy.2012.07.049

    Article  Google Scholar 

  53. Von Blottnitz, H.; Curran, M.A.: A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas and environmental life cycle perspective. J. Clean. Prod. 15, 607–619 (2007). https://doi.org/10.1016/j.jclepro.2006.03.002

    Article  Google Scholar 

  54. Chang, W.R.; Hwang, J.J.; Wu, W.: Environmental impact and sustainability study on biofuels for transportation applications. Renew. Sustain. Energy Rev. 67, 277–288 (2017). https://doi.org/10.1016/j.rser.2016.09.020

    Article  Google Scholar 

  55. Uellendahl, H.; Wang, G.; Møller, H.B.; Jørgensen, U.; Skiadas, I.V.; Gavala, H.N.; Ahring, B.K.: Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation. Water Sci. Technol. 58, 1841–1847 (2008). https://doi.org/10.2166/wst.2008.504

    Article  Google Scholar 

  56. Singh, D.; Sandhu, S.S.; Sarma, A.K.: A comprehensive study for setting up mini-biorefinery pilot plant for biodiesel, hybrid fuel, and hydroprocessed fuels derived from waste cooking oil. Energy Sour., Part A: Recovery, Util., Environ. Eff. 42, 432–445 (2020). https://doi.org/10.1080/15567036.2019.1587089

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Departments of Chemical Engineering and Central Research Facility of the NIT Agartala for providing the facility support. GaBi® India is sincerely acknowledged for providing the software. The Department of Chemical Engineering, VNIT Nagpur is much appreciated for providing the necessary training.

Author information

Authors and Affiliations

Authors

Contributions

Rupak Roy contributed to experimentation, data curation, initial manuscript organization. Debika Debnath contributed to modeling and simulation of energy recovery. Srimanta Ray contributed to conceptualization, methodology, validation, manuscript organization, drafting, revision and supervision.

Corresponding author

Correspondence to Srimanta Ray.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, R., Debnath, D. & Ray, S. Comprehensive Assessment of Various Lignocellulosic Biomasses for Energy Recovery in a Hybrid Energy System. Arab J Sci Eng 47, 5935–5948 (2022). https://doi.org/10.1007/s13369-021-05723-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05723-3

Keywords

Navigation