Skip to main content

Advertisement

Log in

Thermochemical characterization and assessment of residual biomass energy in Paraguay

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Residual lignocellulosic biomass is an abundant and renewable source that plays a strategic role in energy policy in the developing countries. As a result, there is a need to increase biomass participation into the energy matrix. This work reports an overview on available residual biomass from agricultural fields and agro-industries in Paraguay, which can be used to produce energy by direct combustion. The total amount of residual biomass in agricultural fields from six traditional crops (soybean, sugarcane, corn, wheat, rice, and cassava) was estimated at an average of 46.6 million tonnes per year for the period 2016–2020. In addition, the spatial distribution of estimated residual biomass for the year 2020 is presented on maps. Furthermore, thermochemical profiles of thirty-seven residual biomass samples from agro-industries, including bulk density, moisture, ash content, heating values, and energy density, are reported. The high heating values (HHV) experimentally obtained ranged from 7 to 21 MJ/kg and the calculated energy density reached up to 12,560 MJ/m3. All residual biomass exhibited good characteristics to be used as solid fuel. Finally, the available thermal energy from the biomass residues in Paraguay was analyzed under different scenarios of biomass utilization. The thermal energy potential (TEP) using 35% of the selected agricultural residues by direct combustion could generate 225,686 TJ/year, and the electrical energy potential (EEP) by thermoelectric power plant could generate 20,896 GWh/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Perera F, Nadeau K (2022) Climate change, fossil-fuel pollution, and children’s health. N Engl J Med 386:2303–2314. https://doi.org/10.1056/nejmra2117706

    Article  Google Scholar 

  2. Lelieveld J, Klingmüller K, Pozzer A, Burnett RT, Haines A, Ramanathan V (2019) Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc Natl Acad Sci U S A 116:7192–7197. https://doi.org/10.1073/pnas.1819989116

    Article  Google Scholar 

  3. Borowski PF (2021) Significance and directions of energy development in African countries. Energies (Basel) 14:4479. https://doi.org/10.3390/en14154479

    Article  Google Scholar 

  4. Rios M, Kaltschmitt M (2013) Bioenergy potential in Mexico-status and perspectives on a high spatial distribution. Biomass Conversion Biorefinery 3:239–254. https://doi.org/10.1007/s13399-013-0085-3

    Article  Google Scholar 

  5. Portugal-Pereira J, Soria R, Rathmann R, Schaeffer R, Szklo A (2015) Agricultural and agro-industrial residues-to-energy: techno-economic and environmental assessment in Brazil. Biomass Bioenerg 81:521–533. https://doi.org/10.1016/j.biombioe.2015.08.010

    Article  Google Scholar 

  6. Islas J, Manzini F, Masera O, Vargas V (2018) Solid biomass to heat and power. In: Lago C, Caldés N, Lechón YBT (eds) The role of bioenergy in the emerging bioeconomy: Resources, Technologies, Sustainability and Policy. Academic Press, pp 145–177. https://doi.org/10.1016/B978-0-12-813056-8.00004-2

  7. Casau M, Dias MF, Matias JCO, Nunes LJR (2022) Residual biomass: a comprehensive review on the importance, uses and potential in a circular bioeconomy approach. Resources 11:35. https://doi.org/10.3390/resources11040035

    Article  Google Scholar 

  8. WTO (2017) World Trade Organization Trade Policy Review - Paraguay. In: World Trade and Arbitration Materials. https://www.wto.org/english/tratop_e/tpr_e/s360_e.pdf. Accessed 15 Jul 2022

  9. MAG (2021) Ministerio de Agricultura y Ganadería. Síntesis estadísticas. http://www.mag.gov.py/index.php/institucion/dependencias/sintesis-estadistica. Accessed 5 Apr 2022

  10. INFONA (2021) Instituto Forestal Nacional. http://www.infona.gov.py/. Accessed 4 Apr 2022

  11. Sivabalan K, Hassan S, Ya H, Pasupuleti J (2021) A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply. J Phys: Conf Ser 1831:012033. https://doi.org/10.1088/1742-6596/1831/1/012033

    Article  Google Scholar 

  12. Consonni S, Giugliano M, Grosso M (2005) Alternative strategies for energy recovery from municipal solid waste: part A: mass and energy balances. Waste Manage 25:123–135. https://doi.org/10.1016/j.wasman.2004.09.007

    Article  Google Scholar 

  13. VMME (2021) Viceministerio de Minas y Energía. Balance Energético Nacional 2020. http://www.ssme.gov.py/vmme/pdf/balance2011/BEN2011Paraguay-JULIO 2012.pdf. Accessed 15 Jul 2022

  14. Rios M, Kaltschmitt M, Borsy P, Ortiz R (2016) Solid biomass within the energy system of Eastern Paraguay—status and consequences. Biomass Conversion Biorefinery 6:365–375. https://doi.org/10.1007/s13399-015-0194-2

    Article  Google Scholar 

  15. Rosillo-Calle F, de Groot P, Hemstock SL (2015) Non-woody biomass and secondary fuels. In: Rosillo-Calle F, de Groot P, Hemstock SL, Woods J (eds) The biomass assessment handbook: energy for a sustainable environment, 2nd edn. Routledge, pp 106–139

    Chapter  Google Scholar 

  16. Presidencia de la República del Paraguay (2016) Decreto No. 6092/2016: Política Energética de la República del Paraguay [Exec. Order No. 6092 (10 October 2016)]

  17. VMME (2018) Viceministerio de Minas y Energía. Sustainable energy agenda of Paraguay 2019–2023. https://www.ssme.gov.py/vmme/pdf/agenda/AgendaEnerdelParaguay-VFInal_compressed.pdf . Accessed 15 Jul 2022

  18. CAPECO (2021) Cámara paraguaya de exportadores y comercializadores de cereales y oleaginosas. http://capeco.org.py/. Accessed 15 Jul 2022

  19. REDIEX (2021) Red de Inversiones y Exportaciones - Paraguay Investment & Paraguay Trade Network. Paraguay Investment Guide 2019–2020. http://www.rediex.gov.py/cuadros-estadisticos-de-comercio-exterior-exp13. Accessed 15 Jul 2022

  20. FAO-AQUASTAT (2021) Global Information System on Water and Agriculture: Country Profile - Paraguay. In: Fao. https://www.fao.org/aquastat/en/countries-and-basins/country-profiles/country/PRY. Accessed 16 Jul 2022

  21. Koopmans A, Koppejan J (1997) Agricultural and forest residues-generation, utilization and availability. In: Regional consultation on modern applications of biomass energy. Food and Agriculture Organization of the United Nations, Kuala Lumpur, p 23

  22. Pierossi MA, Bertolani FC (2018) Sugarcane trash as feedstock for biorefineries: agricultural and logistics issues. Agricultural and logistics issues. In: Chandel AK, Silveira MHL (eds) Advances in sugarcane biorefinery: technologies, commercialization, policy issues and paradigm shift for bioethanol and by-products. Elsevier, pp 17–39. https://doi.org/10.1016/B978-0-12-804534-3.00002-1

  23. Empresa de Pesquisa Energética (2014) Recursos Energéticos. Nota técnica DEA 15/14. Inventário Energético de Resíduos Rurais. Ministério de Minas e Energia https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-251/topico-308/DEA%2015%20-%2014%20-%20%20Invent%C3%A1rio%20Energ%C3%A9tico%20de%20Res%C3%ADduos%20Rurais%5B1%5D.pdf. Accessed 16 Jul 2022

  24. Fernandes ERK, Marangoni C, Souza O, Sellin N (2013) Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manage 75:603–608. https://doi.org/10.1016/j.enconman.2013.08.008

    Article  Google Scholar 

  25. DGN (1982) Dirección General de Normas. Norma Mexicana NMX-F-428–1982: Foods – Determination of moisture (thermobalance rapid method)

  26. ASTM (1996) ASTM D1895–96: standard test methods for apparent density, bulk factor, and pourability of plastic materials. ASTM International. https://doi.org/10.1520/D1895-96

    Article  Google Scholar 

  27. Gouveia ER, Trajano do Nascimento R, Souto-Maior AM, de Moraes Rocha GJ (2009) Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Química Nova 32:1500–1503. https://doi.org/10.1590/S0100-40422009000600026

    Article  Google Scholar 

  28. ASTM (2013) ASTM D5865–13: standard test method for gross calorific value of coal and coke. ASTM International. https://doi.org/10.1520/D5865-13

    Article  Google Scholar 

  29. Gaffert GA (1981) Centrales de Vapor. Barcelona: Editorial Reverté S.A.

  30. Vakkilainen EK (2017) Boiler processes. In: Vakkilainen EK (ed) Steam generation from biomass. Butterworth-Heinemann, pp 57–86

    Chapter  Google Scholar 

  31. IEA (2007) International Energy Agency: Energy Technology Essentials - Biomass for Power Generation and CHP. International Energy Agency https://iea.blob.core.windows.net/assets/1028bee0-2da1-4d68-8b0a-9e5e03e93690/essentials3.pdf. Accessed 16 Jul 2022

  32. INFONA Instituto Forestal Nacional. Lista de precios de productos forestales. https://nube.infona.gov.py/index.php/s/ED4zx85DGeYPLTD?path=%2FDatos estadísticos (Lista de Precios)#pdfviewer. Accessed 15 Jul 2022

  33. World Forest Industries (2019) Amount of heat energy in a firewood cord. http://worldforestindustries.com/forest-biofuel/firewood/firewood-btu-ratings/. Accessed 16 Jul 2022

  34. Itaipú Binacional (2022) Memorial anual Itaipu Binacional 2021. Itaipú Binacional https://www.itaipu.gov.py/sites/default/files/MEMORIAANUALITAIPU2021_web.pdf. Accessed 16 Jul 2022

  35. Nigam PS (2017) An overview: recycling of solid barley waste generated as a by-product in distillery and brewery. Waste Manage 62:255–261. https://doi.org/10.1016/j.wasman.2017.02.018

    Article  Google Scholar 

  36. CIA (2022) Central Intelligence Agency: The World Factbook - Paraguay. In: CIA Library. https://www.cia.gov/the-world-factbook/countries/paraguay/. Accessed 16 Jul 2022

  37. USDA (2022) U. S. Department of Agriculture - International Production Assessment Division. Paraguay Production. https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=PA. Accessed 16 Jul 2022

  38. Ferreira LRA, Otto RB, Silva FP, de Souza SNM, de Souza SS, Ando Junior OH (2018) Review of the energy potential of the residual biomass for the distributed generation in Brazil. Renew Sustain Energy Rev 94:440–455. https://doi.org/10.1016/j.rser.2018.06.034

    Article  Google Scholar 

  39. Cechim Junior C, Johann JA, Antunes JFG (2017) Mapping of sugarcane crop area in the Paraná state using Landsat/TM/OLI and IRS/LISS-3 images. Revista Brasileira de Engenharia Agricola e Ambiental 21:427–432. https://doi.org/10.1590/1807-1929/agriambi.v21n6p427-432

    Article  Google Scholar 

  40. Enciso V (2019) Producción y Comercialización de Caña de Azúcar y Azúcar. Facultad de Ciencias Agrarias - Universidad Nacional de Asunción. https://www.agr.una.py/ecorural/otras_publicaciones/Producc_comer_cana_azucar.pdf. Accessed 16 Jul 2022

  41. Fu B, Chen L, Huang H, Qu P, Wei Z (2021) Impacts of crop residues on soil health: a review. Environmental Pollutants and Bioavailability 33:164–173. https://doi.org/10.1080/26395940.2021.1948354

    Article  Google Scholar 

  42. Universidad Industrial de Santander. Centro de Estudios e Investigaciones Ambientales, Unidad de Planeación Minero Energética, Instituto de Hidrología Meteorología y Estudios Ambientales (2011) Atlas del potencial energético de la biomasa residual en Colombia. Bucaramanga (Colombia): Universidad Industrial de Santander http://bdigital.upme.gov.co/handle/001/1058. Accessed 16 Jul 2022

  43. Subero Pérez E (2010) Caracterización de los Combustibles Sólidos. Escuela Universitaria Ingeniería Técnica Industrial Zaragoza https://zaguan.unizar.es/record/5357/files/TAZ-PFC-2010-348.pdf. Accessed 16 Jul 2022

  44. Cruz NC, Silva FC, Tarelho LAC, Rodrigues SM (2019) Critical review of key variables affecting potential recycling applications of ash produced at large-scale biomass combustion plants. Resour Conserv Recycl 150:104427. https://doi.org/10.1016/j.resconrec.2019.104427

    Article  Google Scholar 

  45. Xing P, Mason PE, Chilton S, Lloyd S, Jones JM, Williams A, Nimmo W, Pourkashanian M (2016) A comparative assessment of biomass ash preparation methods using X-ray fluorescence and wet chemical analysis. Fuel 182:161–165. https://doi.org/10.1016/j.fuel.2016.05.081

    Article  Google Scholar 

  46. Zając G, Szyszlak-Bargłowicz J, Gołębiowski W, Szczepanik M (2018) Chemical characteristics of biomass ashes. Energies (Basel) 11:2885. https://doi.org/10.3390/en11112885

    Article  Google Scholar 

  47. Cruz G, Santiago PA, Braz CEM, Seleghim P, Crnkovic PM (2018) Investigation into the physical–chemical properties of chemically pretreated sugarcane bagasse. J Therm Anal Calorim 132:1039–1053. https://doi.org/10.1007/s10973-018-7041-1

    Article  Google Scholar 

  48. Athira G, Bahurudeen A, Appari S (2021) Thermochemical conversion of sugarcane bagasse: composition, reaction kinetics, and characterisation of by-products. Sugar Tech 23:433–452. https://doi.org/10.1007/s12355-020-00865-4

    Article  Google Scholar 

  49. Varma AK, Mondal P (2016) Physicochemical characterization and pyrolysis kinetic study of sugarcane bagasse using thermogravimetric analysis. J Energy Resour Technol, Trans ASME 138:052205. https://doi.org/10.1115/1.4032729

    Article  Google Scholar 

  50. Zhang Y, Wang Q, Li B, Li H, Zhao W (2018) Is there a general relationship between the exergy and HHV for rice residues? Renewable Energy 117:37–45. https://doi.org/10.1016/j.renene.2017.10.022

    Article  Google Scholar 

  51. Ambrosio R, Pauletti V, Barth G, Povh FP, da Silva DA, Blum H (2017) Energy potential of residual maize biomass at different spacings and nitrogen doses. Cienc Agrotecnol 41:626–633. https://doi.org/10.1590/1413-70542017416009017

    Article  Google Scholar 

  52. Silva RL, PatelliJúnior JR, Seye O, Michels CS, Paula IO, Schneider PS (2020) Experimental investigation on eucalyptus sawdust torrefaction for energy properties upgrading. Scientia Forestalis 48:e2931. https://doi.org/10.18671/scifor.v48n125.01

    Article  Google Scholar 

  53. Stolarski M, Graban Ł, Szczukowski S, Tworkowski J (2010) Agricultural and forest biomass as feedstock in the manufacture of solid biofuels. Polish J Agronomy 2:67–72

    Google Scholar 

  54. Borowski PF (2022) Management of energy enterprises in zero-emission conditions: bamboo as an innovative biomass for the production of green energy by power plants. Energies (Basel) 15:1928. https://doi.org/10.3390/en15051928

    Article  Google Scholar 

  55. Tang JP, Lam HL, Aziz MKA, Morad NA (2016) Enhanced Biomass Characteristics Index in palm biomass calorific value estimation. Appl Therm Eng 105:941–949. https://doi.org/10.1016/j.applthermaleng.2016.05.090

    Article  Google Scholar 

  56. Festel GW (2008) Biofuels - economic aspects. Chem Eng Technol 31:715–720. https://doi.org/10.1002/ceat.200700335

    Article  Google Scholar 

  57. Krajnc D, Glavic P (2003) Indicators of sustainable production. Clean Technol Environ Policy 5:279–288. https://doi.org/10.1007/s10098-003-0221-z

    Article  Google Scholar 

  58. Zhao G, Bryan BA, King D, Luo Z, Wang E, Yu Q (2015) Sustainable limits to crop residue harvest for bioenergy: maintaining soil carbon in Australia’s agricultural lands. GCB Bioenergy 7:479–487. https://doi.org/10.1111/gcbb.12145

    Article  Google Scholar 

  59. Mirzaei M, Anari MG, Razavy-Toosi E, Asadi H, Moghiseh E, Saronjic N, Rodrigo-Comino J (2021) Preliminary effects of crop residue management on soil quality and crop production under different soil management regimes in corn-wheat rotation systems. Agronomy 11:302. https://doi.org/10.3390/agronomy11020302

    Article  Google Scholar 

  60. Timilsina G, Curiel ID, Chattopadhyay D (2021) How much does Latin America gain from enhanced cross-border electricity trade in the short run? Policy Research Working Paper 9692 Development Research Group. World Bank Group https://openknowledge.worldbank.org/bitstream/handle/10986/35729/How-Much-Does-Latin-America-Gain-from-Enhanced-Cross-Border-Electricity-Trade-in-the-Short-Run.pdf?sequence=1&isAllowed=y. Accessed 16 Jul 2022

  61. Comisión de Integración Energética Regional (2020) Tarifas Eléctricas en Distribución para Clientes Regulados 2020. Comparación internacional de tarifas Sectores Residencial e Industrial - Noviembre 2020. Comisión de Integración Energética Regional http://ciertarifas.org/wp-content/uploads/exclude/2021/03/TarifasElectricas_2020_AnalisisInternacional.pdf. Accessed 16 Jul 2022

  62. ANDE (2021) Administración Nacional De Energía: Plan Maestro de Generación. Administración Nacional De Energía https://www.ande.gov.py/documentos/plan_maestro/PLANMAESTRODEGENERACION2021–2040.pdf. Accessed 16 Jul 2022

Download references

Funding

This study was financially supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT, Paraguay) and the Fondo para la Excelencia de la Educación y la Investigación (FEEI) provided through the project BPIN20-105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ho Shin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivaldi, J.D., Shin, H.H., Colmán, F. et al. Thermochemical characterization and assessment of residual biomass energy in Paraguay. Biomass Conv. Bioref. 14, 10115–10130 (2024). https://doi.org/10.1007/s13399-022-03155-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03155-z

Keywords

Navigation