Skip to main content

Advertisement

Log in

Torsional Vibration for Rolling Mill with the Drive System Shaft Axis Deviations

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The torsional vibration is a technical problem during the rolling process, which seriously affects rolling stability and production efficiency. In order to study the influence of axis deviation of the rolling mill transmission system on torsional vibration, a reasonable dynamic model can be established to explore its dynamic characteristics. In this paper, considering the periodic excitation caused by the axis deviations and the torsional torque change under the torsional vibration, the nonlinear dynamic model of the transmission system was established. The simulation results show the energy input to the main transmission system approximately periodically through obtaining the drive energy of the rolling mill motor by the equivalent eccentric mass. The dynamic change of tension and friction moment of the strip is caused by the torsional vibration of the transmission system, which leads to an unstable energy conversion process in the rolling interface. Through the monitoring experiment data by taking the 7-stand tandem hot rolling mill of Chengde Steel Co. for example, the theory reliability was further verified. All these research results are significant to solving the torsional vibration problem of rolling mill drive system with axis deviations and provide references for the operation in the strip production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fan, X.B.; Zhao, B.; Jiang, Y.; Fan, B.X.: Review on main drive torsional vibration and roller coupling vibration of rolling mill. Recent Patents Eng. 14, 1872–2121 (2020). https://doi.org/10.2174/1872212114999200421150533

    Article  Google Scholar 

  2. Zou, J.X.: Vibration control of tandem cold rolling mill system. Metallurgical Industry Press, Beijing (1998)

    Google Scholar 

  3. Niroomand, M.R.; Forouzan, M.R.; Salimi, M.: Prediction of surface quality due to chatter vibration in rolling of thin steel strip using ALE finite element method. Key Eng. Mater. 473(473), 572–578 (2011)

    Article  Google Scholar 

  4. Wen, B.C.; Wu, X.H.; Ding, Q.; Han, Q.K.: Nonlinear dynamics theory and experiment of rotating machinery with faults. The Science Publishing Company, Shanghai (2004)

    Google Scholar 

  5. Liu, S.; Liu, J.J.; Wu, Z.; Li, J.X.: Bifurcation control for electromechanical coupling torsional vibration in rolling mill system driven by DC motor. J. Vibroeng. 50(1), 113–125 (2016). https://doi.org/10.3233/jae-150083

    Article  Google Scholar 

  6. Shi, P.M.; Li, J.Z.; Jiang, J.S.; Liu, B.; Han, D.Y.: Nonlinear dynamics of torsional vibration for rolling mill’s main drive system under parametric excitation. J Iron Steel Res. Int. 20, 7–12 (2013). https://doi.org/10.1016/S1006-706X(13)60037-0

    Article  Google Scholar 

  7. Nagai, N.; Furumoto, H.; Hayashi, K.; Ishida, T.; Nakagawa, N.: Experimental and analytical evaluation for torsional vibration of hot rolling mill with twin-type drive system. J. Jstp. 50(580), 409–413 (2009). https://doi.org/10.9773/sosei.50.409

    Article  Google Scholar 

  8. Brandon, Q.; Ueta, T.; Fournier-Prunaret, D.; Kousaka, T.: Numerical bifurcation analysis framework for autonomous piecewise-smooth dynamical systems. Chaos Solitons Fract. 42(1), 187–201 (2009). https://doi.org/10.1016/j.chaos.2008.11.013

    Article  MathSciNet  MATH  Google Scholar 

  9. Petersen, S.R.: Impact torsional vibration of direct-current hot strip mill drive motors. Iron Steel Eng. 10, 105–110 (1964)

    Google Scholar 

  10. Shen, Y.Z.; Liu, H.L.; Xiong, J.; Du, G.J.: Analysis of chaotic behavior of the main drive system with clearance of a heavy plate mill. J Eng. Mech. ASCE 27(007), 232–236 (2010). https://doi.org/10.3724/SP.J.1105.2010.10073

    Article  Google Scholar 

  11. Fan, X.B.; Zang, Y.; Jin, K.: Rolling process and its influence analysis on hot continuous rolling mill vibration. Appl. Phys. 122, 1008 (2016). https://doi.org/10.1007/s00339-016-0541-6

    Article  Google Scholar 

  12. Sun, Y.K.: Model and control of cold and tot strip mill. Metallurgical Industry Press, Beijing (2010)

    Google Scholar 

  13. Harakawa, T.; Nakamura, R.; Kurosawa, R.: Development of high performance rolling mill drive system using PID control method. Tran Sice Jpn. 34(7), 666–673 (2009). https://doi.org/10.9746/sicetr1965.34.666

    Article  Google Scholar 

  14. Liu, L.; Fang, Y.M.; Li, X.G.; Li, J.X.: Tensiometer-free control for a speed and tension system of reversible cold strip mill based on Hamilton theory. ACTA Automatics Sinica. 41(1), 165–175 (2015). https://doi.org/10.9746/sicetr1965.34.666

    Article  Google Scholar 

  15. Tamaoki, T.; Takanezawa, M.; Kimoto, M.; Morita, N.; Hashizume, K.: Study ononline analysis of transfer function of variable-speed rolling mill motor with shaft torsional vibration systems[J]. IEEJ Transactions Ind. Appl. 131(6), 844–857 (2011). https://doi.org/10.1541/ieejias.131.844

    Article  Google Scholar 

  16. Senjanović, I.; Hadžić, N.; Murawski, L.; Vladimir, N.; Alujević, N.; Cho, D.S.: Analytical procedures for torsional vibration analysis of ship power transmission system. Eng. Struct. 178(1), 227–244 (2019). https://doi.org/10.1016/j.engstruct.2018.10.035

    Article  Google Scholar 

  17. Selçuk, A.M.; Öktem, H.: An improved method for inference of piecewise linear systems by detecting jumps using derivative estimation. Nonlinear Anal. Hybrid Syst. 3(3), 277–287 (2009). https://doi.org/10.1016/j.nahs.2009.01.006

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, Z.; Wang, D.: Dynamic characteristics of a rolling mill drive system with backlash in rolling slippage. J. Mater. Processing Tech. 97(1), 69–73 (2000). https://doi.org/10.1016/S0924-0136(99)00329-5

    Article  Google Scholar 

  19. Kim, Y.; Kim, C.W.; Lee, S.; Park, H.: Dynamic modeling and numerical analysis of a cold rolling mill. Int J Precis Eng Man. 14(3), 407–413 (2013). https://doi.org/10.1007/s12541-013-0056-4

    Article  Google Scholar 

  20. Mabrouk, I.B.; Hami, A.E.; Walha, L.; Zghal, B.; Haddar, M.: Dynamic response analysis of vertical axis wind turbine geared transmission system with uncertainty. Eng. Struct. 139, 170–179 (2017). https://doi.org/10.1016/j.engstruct.2017.02.028

    Article  Google Scholar 

  21. Cheng, Q.; Hua, C.C.; Zhang, L.L.; Bai, Z.H.: Adaptive neural torsional vibration suppression of the rolling mill main drive system subject to state and input constraints with sensor errors. J. Frankl. Inst. 357(17), 12886–12903 (2020). https://doi.org/10.1016/j.jfranklin.2020.08.003

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, L.; Frayman, Y.: A dynamically generated fuzzy neural network and its application to torsional vibration control of tandem cold rolling mill spindles. Eng. Appl. Artif. Intell. 15(6), 541–550 (2002). https://doi.org/10.1016/S0952-1976(03)00006-X

    Article  Google Scholar 

  23. Frayman,Y., Wang, L.P.: Torsional vibration control of tandem cold rolling mill spindles: a fuzzy neural approach. Proc. the Australia-Pacific Forum on Intelligent Processing and Manufacturing of Materials. 1, 89–94(1997)

  24. Frayman,Y., Wang, L.P.: Dynamically constructed recurrent fuzzy neural network for cold rolling mill thickness control. Poster Proceedings of the 11th Australian Joint Conference on Artificial Intelligence.1, 15–23(1998)

  25. Gao, C.Y.; Du, G.J.; Li, R.; Guo, X.Q.: An analysis on strip vibration coupled with torsional vibration of main drive system of rolling mill. J Vibroeng. 19(8), 5679–5690 (2007)

    Google Scholar 

  26. Peng, Y.; Zhang, M.; Sun, J.L.; Zhang, Y.: Experimental and numerical investigation on the roll system swing vibration characteristics of a hot rolling mill. ISIJ Int. 57(9), 1567–1576 (2017). https://doi.org/10.2355/isijinternational.ISIJINT-2016-611

    Article  Google Scholar 

  27. Shi, P.M.; Xia, K.W.; Liu, B.; Jiang, J.S.: Dynamics behaviors of rolling mill’s nonlinear torsional vibration of multi-degree-of-freedom main drive system with clearance. J. Mech. Eng. 48(17), 57–64 (2012). https://doi.org/10.3901/JME.2012.17.057

    Article  Google Scholar 

  28. Yan, X.Q.; Wu, X.F.; Yang, X.E.; Wu, S.T.; Xu, J.Z.: Coupling research on torsional vibration and axial vibration of hot strip rolling mill [J]. Eng. Mech. 31(2), 214–218 (2014). https://doi.org/10.6052/j.issn.1000-4750.2012.09.0694

    Article  Google Scholar 

  29. Yun, I.S.; Wilson, W.R.D.; Ehmann, K.F.: Review of chatter studies in cold rolling. Int. J. Mach. Tools Manuf. 38(1), 1499–1530 (1998). https://doi.org/10.1016/s0890-6955(97)00133-8

    Article  Google Scholar 

  30. Hu, P.H.; Ehmann, K.F.: A dynamic model of the rolling process part 1 homogeneous model [J]. Int. J. Mach. Tools Manuf. 40(1), 1–19 (2000). https://doi.org/10.1016/S0890-6955(99)00049-8

    Article  Google Scholar 

  31. Hu, P.H.: Stability and chatter in rolling. Northwestern University. 1998

  32. Wang, Y.T.; Zang, Y.; Wu, D.P.; Fan, X.B.: Studies on the cause of vibration of CSP rolling mill. J. Vib. Meas. Diagnosis 28(4), 365–370 (2008). https://doi.org/10.3969/j.issn.1004-6801.2008.04.021

    Article  Google Scholar 

  33. Liu, S.; Sun, B.P.; Zhao, S.S.; Li, J.X.; Zhang, W.M.: Strongly nonlinear dynamics of torsional vibration for rolling Mill’s electromechanical coupling system. Steel Res. Int. 86, 984–992 (2015). https://doi.org/10.1002/srin.201400216

    Article  Google Scholar 

  34. Xu, T.; Hou, D.X.; Sun, Z.N.; Guo, D.W.: Vibration characteristics of multi-parametric excitations and multi-frequency external excitations of rolling mill under entry thickness fluctuation of strip. J. Iron Steel Res. Int. 27(5), 517–527 (2020). https://doi.org/10.1007/s42243-020-00404-1

    Article  Google Scholar 

  35. Sun, J.L.; Zhang, M.; Peng, Y.: Torsional vibration of 6-H rolling mill based on continuum dynamics and its relationship with strip quality. Eng. Mech. 031(004), 239–244 (2014). https://doi.org/10.6052/j.issn.1000-4750.2012.10.0801

    Article  Google Scholar 

  36. Zhang, R.C.; Tong, C.N.: Torsional vibration control of the main drive system of a rolling mill based on an extended state observer and linear quadratic control[J]. J. Vib. Control. 12(3), 313–327 (2006). https://doi.org/10.1177/1077546306063224

    Article  MathSciNet  MATH  Google Scholar 

  37. Kaminski, M.; Orlowska, K.T.: Optimisation of neural state variables estimators of two-mass drive system using the Bayesian regularization method. B Pol Acad Sci-Tech. 59(1), 33–38 (2011). https://doi.org/10.2478/v10175-011-0006-1

    Article  MATH  Google Scholar 

  38. Frayman, Y.; Wang, L.P.; Wan, C.: Cold rolling mill thickness control using the cascade-correlation neural network. Control Cybern. 31(2), 327–342 (2002). https://doi.org/10.1007/s004220100273

    Article  MATH  Google Scholar 

  39. Amer, Y.A.; El-Sayed, A.T.; El-Bahrawy, F.T.: Torsional vibration reduction for rolling mill’s main drive system via negative velocity feedback under parametric excitation. J. Mech. Sci. Technol. 29(4), 1581–1589 (2015). https://doi.org/10.1007/s12206-015-0330-8

    Article  Google Scholar 

  40. Zhao, J.J.: Plate and Strip Production. Metallurgical Industry Press, Beijing (1992)

    Google Scholar 

  41. Niroomand, M.R.; Forouzan, M.R.; Salimi, M.; Mahmoud, S.; Hamid, S.: Experimental investigations and ALE finite element method analysis of chatter in cold strip rolling. Isij Int. 52(12), 2245–2253 (2012). https://doi.org/10.2355/isijinternational.52.2245

    Article  Google Scholar 

  42. Niroomand, M.R.; Forouzan, M.R.; Salimi, M.: Theoretical and experimental analysis of chatter in tandem cold rolling mills based on wave propagation theory[J]. ISIJ Int. 55(3), 637–646 (2015). https://doi.org/10.2355/isijinternational.55.637

    Article  Google Scholar 

  43. Wang, Q.Y.; Zhang, Z.; Chen, H.Q.; Guo, S.; Zhao, J.W.: Characteristics of unsteady lubrication film in metal-forming process with dynamic roll gap. J. Cent. S. Univ. 21(10), 3787–3792 (2014). https://doi.org/10.1007/s11771-014-2363-z

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the supports of the National Key R&D Program of China (No. 2017YFB0306402) , the Key projects of Natural Science Foundation of Hebei Province (No. E2017203161) and the Innovation Funding Project for Graduate Students in Hebei Province (No. CXZZBS2020054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Cui, J., Sun, J. et al. Torsional Vibration for Rolling Mill with the Drive System Shaft Axis Deviations. Arab J Sci Eng 46, 12165–12177 (2021). https://doi.org/10.1007/s13369-021-05684-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05684-7

Keywords

Navigation