Skip to main content
Log in

JayaL: A Novel Jaya Algorithm Based on Elite Local Search for Optimization Problems

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Many metaheuristic methods have been proposed to solve engineering problems in literature studies. One of these is the Jaya algorithm, a new population-based optimization algorithm that has been suggested in recent years to solve complex and continuous optimization problems. Jaya basically adopts the best solution by avoiding the worst ones. Although this process accelerates the convergence for the solution, it causes concessions in the population and results in inadequate local search capacity. To increase the search capability and exploitation performance of the Jaya algorithm, a new local search procedure—Elite Local Search—has been added to the Jaya algorithm in this study without making any changes in its basic search capability. Thus, an efficient and robust strategy that can overcome continuous optimization problems is presented. This new algorithm created with the elite local search procedure is called JayaL. To demonstrate the performance and accuracy of JayaL, 20 different well-known benchmark functions in the literature were used. In addition to JayaL algorithm, these functions were solved with differential evolution (DE), particle swarm optimization (PSO), artificial bee colony (ABC), dragonfly algorithm (DA), grasshopper optimization algorithm (GOA), atom search optimization (ASO) and Jaya algorithms. The performances of JayaL, DE, PSO, ABC DA, GOA, ASO and Jaya algorithms were compared with each other, and experimental results were supported by convergence graphs. At the same time, JayaL has been applied to constrained real-world engineering problems. According to the analyses, it has been concluded that JayaL algorithm is a robust and efficient method for continuous optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Storn, R.; Price, K.: Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Global Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  2. Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007). https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95-International Conference on Neural Networks (1995), pp. 1942–1948. IEEE

  4. Kaveh, A.; Hosseini, S.M.; Akbari, H.: Plasma generation optimization: a new physically-based metaheuristic algorithm for solving constrained optimization problems. Eng. Comput. ahead-of-print (2020). https://doi.org/10.1108/EC-05-2020-0235

    Article  Google Scholar 

  5. Kaveh, A.; Khanzadi, M.; Rastegar Moghaddam, M.: Billiards-inspired optimization algorithm; a new meta-heuristic method. Structures 27, 1722–1739 (2020). https://doi.org/10.1016/j.istruc.2020.07.058

    Article  Google Scholar 

  6. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016). https://doi.org/10.1007/s00521-015-1920-1

    Article  MathSciNet  Google Scholar 

  7. Saremi, S.; Mirjalili, S.; Lewis, A.: Grasshopper optimisation algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017). https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  8. Zhao, W.; Wang, L.; Zhang, Z.: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl.-Based Syst. 163, 283–304 (2019). https://doi.org/10.1016/j.knosys.2018.08.030

    Article  Google Scholar 

  9. Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  10. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019). https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  11. Rao, R.V.: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7, 19–34 (2016). https://doi.org/10.5267/j.ijiec.2015.8.004

    Article  Google Scholar 

  12. Rao, R.V.; Saroj, A.: A self-adaptive multi-population based Jaya algorithm for engineering optimization. Swarm Evol. Comput. 37, 1–26 (2017). https://doi.org/10.1016/j.swevo.2017.04.008

    Article  Google Scholar 

  13. Rao, R.V.; Rai, D.P.: Optimisation of welding processes using quasi-oppositional-based Jaya algorithm. J. Exp. Theor. Artif. Intell. 29(5), 1099–1117 (2017). https://doi.org/10.1080/0952813X.2017.1309692

    Article  Google Scholar 

  14. Wang, L.; Huang, C.: A novel elite opposition-based Jaya algorithm for parameter estimation of photovoltaic cell models. Optik 155, 351–356 (2018). https://doi.org/10.1016/j.ijleo.2017.10.081

    Article  Google Scholar 

  15. Warid, W.: Optimal power flow using the AMTPG-Jaya algorithm. Appl. Soft Comput. 91, 106252 (2020). https://doi.org/10.1016/j.asoc.2020.106252

    Article  Google Scholar 

  16. Luu, T.V.; Nguyen, N.S.: Parameters extraction of solar cells using modified JAYA algorithm. Optik 203, 164034 (2020). https://doi.org/10.1016/j.ijleo.2019.164034

    Article  Google Scholar 

  17. Lakshmi, R.J.; Neebha, T.M.: Design of antenna arrays using chaotic Jaya Algorithm. In: Advanced engineering optimization through intelligent techniques, pp. 337–349. Springer, Newyork (2020)

    Chapter  Google Scholar 

  18. Ingle, K.K.; Jatoth, D.R.K.: An efficient JAYA algorithm with Lévy flight for non-linear channel equalization. Expert Syst. Appl. 145, 112970 (2020). https://doi.org/10.1016/j.eswa.2019.112970

    Article  Google Scholar 

  19. Raut, U.; Mishra, S.: An improved Elitist-Jaya algorithm for simultaneous network reconfiguration and DG allocation in power distribution systems. Renew. Energy Focus 30, 92–106 (2019). https://doi.org/10.1016/j.ref.2019.04.001

    Article  Google Scholar 

  20. Rao, R.V.; More, K.C.: Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm. Energy Convers. Manage. 140, 24–35 (2017). https://doi.org/10.1016/j.enconman.2017.02.068

    Article  Google Scholar 

  21. Chaudhuri, A.; Sahu, T.P.: A hybrid feature selection method based on Binary Jaya algorithm for micro-array data classification. Comput. Electr. Eng. 90, 106963 (2021). https://doi.org/10.1016/j.compeleceng.2020.106963

    Article  Google Scholar 

  22. Chaudhuri, A.; Sahu, T.P.: PROMETHEE-based hybrid feature selection technique for high-dimensional biomedical data: application to Parkinson’s disease classification. Electron. Lett. 56(25), 1403–1406 (2020). https://doi.org/10.1049/el.2020.2517

    Article  Google Scholar 

  23. Caldeira, R.H.; Gnanavelbabu, A.: A Pareto based discrete Jaya algorithm for multi-objective flexible job shop scheduling problem. Expert Syst. Appl. 170, 114567 (2021). https://doi.org/10.1016/j.eswa.2021.114567

    Article  Google Scholar 

  24. Degertekin, S.O.; Yalcin Bayar, G.; Lamberti, L.: Parameter free Jaya algorithm for truss sizing-layout optimization under natural frequency constraints. Comput. Struct. 245, 106461 (2021). https://doi.org/10.1016/j.compstruc.2020.106461

    Article  Google Scholar 

  25. Aslan, M.; Gunduz, M.; Kiran, M.S.: JayaX: Jaya algorithm with xor operator for binary optimization. Appl. Soft Comput. 82, 105576 (2019). https://doi.org/10.1016/j.asoc.2019.105576

    Article  Google Scholar 

  26. Tawhid, M.A.; Savsani, P.: Discrete Sine-Cosine Algorithm (DSCA) with local search for solving traveling salesman problem. Arab. J. Sci. Eng. 44(4), 3669–3679 (2019). https://doi.org/10.1007/s13369-018-3617-0

    Article  Google Scholar 

  27. Mishra, I.; Mishra, I.; Prakash, J.: Differential evolution with local search algorithms for data clustering: a comparative study. In: Soft Computing: Theories and Applications, pp. 557–567. Springer, Newyork (2019)

    Chapter  Google Scholar 

  28. Chaves, A.A.; Gonçalves, J.F.; Lorena, L.A.N.: Adaptive biased random-key genetic algorithm with local search for the capacitated centered clustering problem. Comput. Ind. Eng. 124, 331–346 (2018). https://doi.org/10.1016/j.cie.2018.07.031

    Article  Google Scholar 

  29. Wang, S.; Lu, Z.; Wei, L.; Ji, G.; Yang, J.: Fitness-scaling adaptive genetic algorithm with local search for solving the multiple depot vehicle routing problem. SIMULATION 92(7), 601–616 (2016). https://doi.org/10.1177/0037549715603481

    Article  Google Scholar 

  30. Lin, J.T.; Chiu, C.-C.: A hybrid particle swarm optimization with local search for stochastic resource allocation problem. J. Intell. Manuf. 29(3), 481–495 (2018). https://doi.org/10.1007/s10845-015-1124-7

    Article  MathSciNet  Google Scholar 

  31. Chih, M.: Three pseudo-utility ratio-inspired particle swarm optimization with local search for multidimensional knapsack problem. Swarm Evol. Comput. 39, 279–296 (2018). https://doi.org/10.1016/j.swevo.2017.10.008

    Article  Google Scholar 

  32. Cao, Y.; Zhang, H.; Li, W.; Zhou, M.; Zhang, Y.; Chaovalitwongse, W.A.: Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions. IEEE Trans. Evol. Comput. 23(4), 718–731 (2019). https://doi.org/10.1109/TEVC.2018.2885075

    Article  Google Scholar 

  33. Mavrovouniotis, M.; Müller, F.M.; Yang, S.: Ant colony optimization with local search for dynamic traveling salesman problems. IEEE Transactions on Cybernetics 47(7), 1743–1756 (2017). https://doi.org/10.1109/TCYB.2016.2556742

    Article  Google Scholar 

  34. Dutta, S., Banerjee, A.: Optimal image fusion algorithm using modified whale optimization algorithm amalgamed with local search and BAT algorithm. In: 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), 11–13 (2020), pp. 709–715

  35. Ghasemishabankareh, B.; Ozlen, M.; Li, X.; Deb, K.: A genetic algorithm with local search for solving single-source single-sink nonlinear non-convex minimum cost flow problems. Soft. Comput. 24(2), 1153–1169 (2020). https://doi.org/10.1007/s00500-019-03951-2

    Article  Google Scholar 

  36. Kashan, M.H.; Nahavandi, N.; Kashan, A.H.: DisABC: a new artificial bee colony algorithm for binary optimization. Appl. Soft Comput. 12(1), 342–352 (2012). https://doi.org/10.1016/j.asoc.2011.08.038

    Article  Google Scholar 

  37. Zhang, X.; Wu, C.; Li, J.; Wang, X.; Yang, Z.; Lee, J.-M.; Jung, K.-H.: Binary artificial algae algorithm for multidimensional knapsack problems. Appl. Soft Comput. 43, 583–595 (2016). https://doi.org/10.1016/j.asoc.2016.02.027

    Article  Google Scholar 

  38. Boussaïd, I.; Lepagnot, J.; Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013). https://doi.org/10.1016/j.ins.2013.02.041

    Article  MathSciNet  MATH  Google Scholar 

  39. Yu, K.; Liang, J.J.; Qu, B.Y.; Chen, X.; Wang, H.: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers. Manage. 150, 742–753 (2017). https://doi.org/10.1016/j.enconman.2017.08.063

    Article  Google Scholar 

  40. Kaveh, A.; Hosseini, S.M.; Zaerreza, A.: Improved Shuffled Jaya algorithm for sizing optimization of skeletal structures with discrete variables. Structures 29, 107–128 (2021). https://doi.org/10.1016/j.istruc.2020.11.008

    Article  Google Scholar 

  41. Zhang, Y.; Ma, M.; Jin, Z.: Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models. Energy 211, 118644 (2020). https://doi.org/10.1016/j.energy.2020.118644

    Article  Google Scholar 

  42. Farah, A.; Belazi, A.: A novel chaotic Jaya algorithm for unconstrained numerical optimization. Nonlinear Dyn. 93(3), 1451–1480 (2018). https://doi.org/10.1007/s11071-018-4271-5

    Article  Google Scholar 

  43. Guo, Z.; Huang, H.; Deng, C.; Yue, X.; Wu, Z.: an enhanced differential evolution with elite chaotic local search. Comput. Intell. Neurosci. 2015, 583759 (2015). https://doi.org/10.1155/2015/583759

    Article  Google Scholar 

  44. Belegundu, A.D.; Arora, J.S.: A study of mathematical programming methods for structural optimization. Part I: Theory. Int. J. Num. Met. Eng. (1985). https://doi.org/10.1002/nme.1620210904

    Article  MATH  Google Scholar 

  45. He, Q.; Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20(1), 89–99 (2007). https://doi.org/10.1016/j.engappai.2006.03.003

    Article  Google Scholar 

  46. Coello Coello, C.A.; Mezura Montes, E.: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Eng. Inform. 16(3), 193–203 (2002). https://doi.org/10.1016/S1474-0346(02)00011-3

    Article  Google Scholar 

  47. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  48. Ragsdell, K.M.; Phillips, D.T.: Optimal design of a class of welded structures using geometric programming. J. Eng. Ind. 98(3), 1021–1025 (1976). https://doi.org/10.1115/1.3438995

    Article  Google Scholar 

  49. Sandgren, E.: Nonlinear integer and discrete programming in mechanical design optimization. J. Mech. Des. 112(2), 223–229 (1990). https://doi.org/10.1115/1.2912596

    Article  Google Scholar 

  50. Kumar, A.; Wu, G.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N.; Das, S.: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol. Comput. 56, 100693 (2020). https://doi.org/10.1016/j.swevo.2020.100693

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MFT contributed to methodology, writing—original draft, validation and writing—review and editing. MB contributed to conceptualization, methodology, data curation, writing—original draft, validation and writing—review and editing.

Corresponding author

Correspondence to Mehmet Fatih Tefek.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tefek, M.F., Beşkirli, M. JayaL: A Novel Jaya Algorithm Based on Elite Local Search for Optimization Problems. Arab J Sci Eng 46, 8925–8952 (2021). https://doi.org/10.1007/s13369-021-05677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05677-6

Keywords

Navigation