Skip to main content
Log in

A Computational Fluid Dynamics Study of Liquid–Solid Nano-fluid Flow in Horizontal Pipe

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A regular phenomenon in the petroleum industry is the challenges being faced with a multiphase flow system. Recovering only the oil often results in static pressure losses which often leads to a multiphase mixture being pumped to a separation or processing terminal. The rate of micellar aggregates breakup of surfactants is usually faster when compared to their rate of formation. Polymers of high molecular weights are capable of reducing drag even at minute concentrations degrades under shear stress and at high temperatures, this mechanical degradation could be improved upon with the combination of these duos, thereby making use of the physicochemical interactions between polymers molecules and surfactants micellar aggregates, In this study, ionic polymers such as polyacrylic acid (PAA), Tween 20 (non-ionic surfactant) and Carbon Nanotubes (CNT) particle were tested individually and the complexes examined in the pipeline at varied concentrations. A drag reduction of about 50% was obtained with 1000 ppm of polymer, 300 ppm of the surfactant and 500 ppm of the nanofluid CNT. An increase in concentration with increased Torque was also observed regardless of the sample tested. It was realized that these combinations could be a better drag reduction method as results were obtained and analyzed by comparing the individual performances of these substances, with the complexes where the complexes have a better performance, and this could be as a result of the critical role played by the complex mixtures. The effect of the various additives was simulated using computational fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li, L.; Zhang, Y.; Ma, H.; Yang, M.: An investigation of molecular layering at the liquid–solid interface in nanofluids by molecular dynamics simulation. Phys. Lett. A 372, 4541–4544 (2008). https://doi.org/10.1016/j.physleta.2008.04.046

    Article  MATH  Google Scholar 

  2. Eapen, J.; Li, J.; Yip, S.: Mechanism of thermal transport in dilute nanocolloids. Phys. Rev. Lett. 98, 1–4 (2007). https://doi.org/10.1103/PhysRevLett.98.028302

    Article  Google Scholar 

  3. Yu, W.; Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a Renovated Maxwell model. J. Nanopart. Res. 5, 167–171 (2003). https://doi.org/10.1023/A:1024438603801

    Article  Google Scholar 

  4. Leong, K.C.; Yang, C.; Murshed, S.M.S.: A model for the thermal conductivity of nanofluids: the effect of interfacial layer. J. Nanopart. Res. 8, 245–254 (2006). https://doi.org/10.1007/s11051-005-9018-9

    Article  Google Scholar 

  5. Xie, H.; Fujii, M.; Zhang, X.: Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transf. 48, 2926–2932 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.040

    Article  MATH  Google Scholar 

  6. Pang, C.; Jung, J.-Y.; Kang, Y.T.: Aggregation based model for heat conduction mechanism in nanofluids. Int. J. Heat Mass Transf. 72, 392–399 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.055

    Article  Google Scholar 

  7. Sosa, J.; Urquiza, G.; García, J.; Castro, L.: Computational fluid dynamics simulation and geometric design of hydraulic turbine draft tube. Adv. Mech. Eng. 7, 168781401560630 (2015). https://doi.org/10.1177/1687814015606307

    Article  Google Scholar 

  8. Maakala, V.; Järvinen, M.; Vuorinen, V.: Computational fluid dynamics modeling and experimental validation of heat transfer and fluid flow in the recovery boiler superheater region. Appl. Therm. Eng. 139, 222–238 (2018). https://doi.org/10.1016/j.applthermaleng.2018.04.084

    Article  Google Scholar 

  9. Tao, J.; Sun, Q.; Liang, W.; Chen, Z.; He, Y.; Dehmer, M.: Computational fluid dynamics based dynamic modeling of parafoil system. Appl. Math. Model. 54, 136–150 (2018). https://doi.org/10.1016/j.apm.2017.09.008

    Article  MathSciNet  MATH  Google Scholar 

  10. Pagliuca, G.; Timme, S.: Model reduction for flight dynamics simulations using computational fluid dynamics. Aerosp. Sci. Technol. 69, 15–26 (2017). https://doi.org/10.1016/j.ast.2017.06.013

    Article  Google Scholar 

  11. Wang, H.; Zhai, Z.J.: Advances in building simulation and computational techniques: a review between 1987 and 2014. Energy Build. 128, 319–335 (2016). https://doi.org/10.1016/j.enbuild.2016.06.080

    Article  Google Scholar 

  12. Versteeg, H.K.; Malalasekera, W.: An introduction to computational fluid dynamics: the finite volume method (2nd ed.), pp. 1–517, (2015). Pearson Education Limited, Essex, England

  13. Nielsen, E.J.; Diskin, B.: High-performance aerodynamic computations for aerospace applications. Parallel Comput. 64, 20–32 (2017). https://doi.org/10.1016/j.parco.2017.02.004

    Article  MathSciNet  Google Scholar 

  14. Oke, O.; Van Wachem, B.; Mazzei, L.: Lateral solid mixing in gas-fluidized beds: CFD and DEM studies. Chem. Eng. Res. Des. 114, 148–161 (2016). https://doi.org/10.1016/j.cherd.2016.08.014

    Article  Google Scholar 

  15. Tapia, E.; Iranzo, A.; Pino, F.J.; Rosa, F.; Salva, J.A.: Methodology for thermal design of solar tubular reactors using CFD techniques. Int. J. Hydrog. Energy. 41, 19525–19538 (2016). https://doi.org/10.1016/j.ijhydene.2016.07.186

    Article  Google Scholar 

  16. Song, G.; Li, Y.; Wang, W.; Jiang, K.; Shi, Z.; Yao, S.: Hydrate agglomeration modeling and pipeline hydrate slurry flow behavior simulation. Chin. J. Chem. Eng. 27(1), 32–43 (2019). https://doi.org/10.1016/j.cjche.2018.04.004

    Article  Google Scholar 

  17. Sun, B.; Tenneti, S.; Subramaniam, S.: Modeling average gas-solid heat transfer using particle-resolved direct numerical simulation. Int. J. Heat Mass Transf. 86, 898–913 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.046

    Article  Google Scholar 

  18. Yakhot, V.; Thangam, S.; Gatski, T.B.; Orszag, S.A.; Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A Fluid Dyn. 4, 1510–1520 (1992)

    Article  MathSciNet  Google Scholar 

  19. Montero, G.: Implementation of turbulent viscosity from EARSM for two equation turbulence model. (2016)

  20. Launder, B.E.; Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974). https://doi.org/10.1016/0045-7825(74)90029-2

    Article  MATH  Google Scholar 

  21. Tennekes, H.: A First Course in Turbulence. The MIT Press, Cambridge (1972) https://doi.org/10.1017/S002211207321251X

    Book  MATH  Google Scholar 

  22. Tominaga, Y.; Stathopoulos, T.: Numerical simulation of dispersion around an isolated cubic building: comparison of various types of k–ε models. Atmos. Environ. 43, 3200–3210 (2009). https://doi.org/10.1016/j.atmosenv.2009.03.038

    Article  Google Scholar 

  23. Seiferling, F.; Peeters, A.G.; Buchholz, R.; Grosshauser, S.R.; Rath, F.; Weikl, A.: Damping of zonal modes through turbulent momentum transport. Phys. Plasmas (2018). https://doi.org/10.1063/1.5018511

    Article  Google Scholar 

  24. Wincox, D.C.: Turbulent Modeling for CFD. DWC Industries inc., California (1993)

    Google Scholar 

  25. Harlow, F.H.; Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MathSciNet  Google Scholar 

  26. Ko, G.H.; Heo, K.; Lee, K.; Kim, D.S.; Kim, C.; Sohn, Y.; Choi, M.: An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube. Int. J. Heat Mass Transf. 50, 4749–4753 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.029

    Article  Google Scholar 

  27. Wang, J.; Zhu, J.; Zhang, X.; Chen, Y.: Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Exp. Therm. Fluid Sci. 44, 716–721 (2013). https://doi.org/10.1016/j.expthermflusci.2012.09.013

    Article  Google Scholar 

  28. Ahmadi Nadooshan, A.; Eshgarf, H.; Afrand, M.: Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior. J. Mol. Liq. 253, 169–177 (2018). https://doi.org/10.1016/j.molliq.2018.01.012

    Article  Google Scholar 

  29. Izadi, A.; Siavashi, M.; Xiong, Q.: Impingement jet hydrogen, air and CuH2O nanofluid cooling of a hot surface covered by porous media with non-uniform input jet velocity. Int. J. Hydrog. Energy. 44, 15933–15948 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.176

    Article  Google Scholar 

  30. Hussein, A.M.; Bakar, R.A.; Kadirgama, K.: Study of forced convection nanofluid heat transfer in the automotive cooling system. Case Stud. Therm. Eng. 2, 50–61 (2014). https://doi.org/10.1016/j.csite.2013.12.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of University of Technology Baghdad Iraq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainab Yousif Shnain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shnain, Z.Y., Ali, J.M., Sukkar, K.A. et al. A Computational Fluid Dynamics Study of Liquid–Solid Nano-fluid Flow in Horizontal Pipe. Arab J Sci Eng 47, 5577–5585 (2022). https://doi.org/10.1007/s13369-021-05512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05512-y

Keywords

Navigation