Skip to main content
Log in

Selection and Performance of Antifungal Lactic Acid Bacteria in Corn Mini-Silos

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Silage is a method of forage conservation based on lactic fermentation. In order to improve the fermentative performance in corn silages, the aims of the present work were as follows: (I) to screen lactic acid bacteria with acidifying activity, (II) to study their antifungal activity against filamentous fungi and yeasts and (III) to evaluate their performance as antifungal in mini-silos. The acidifying activity was determined by measuring the pH and total titratable acidity. Those most acidifying bacteria were incubated in plates together with fungal markers strains to observe the presence or absence of inhibition halos, in addition to studying the nature of the antifungal metabolites by means of the treatment with proteases. The strain with the widest spectrum of action was selected to formulate an inoculum used in corn mini-silos. During storage, both silos determined humidity, acidification and microbiological composition, and then aerobic stability. The results showed that Lactoplantibacillus (L.) plantarum cultures had a higher production of lactic acid (7.7–17.5 g/L) than Pediococcus (8.8–10.9 g/L). L. plantarum CRL363 could inhibit the growth of filamentous fungi and some yeasts and consequently it was used in mini-silos. Compared to the control, the inoculated silo presented low pH values (4.02–4.85) and low fungi and yeast count until 20 days of storage, demonstrating the great potential of CRL363 strain for the formulation of inoculants for corn silage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Experimental data are available from the authors upon request.

References

  1. Ogunade, I.M.; Martinez-Tuppia, C.; Queiroz, O.C.M.; Jiang, Y.; Drouin, P.; Wu, F.; Vyas, D.; Adesogan, A.T.: Silage review: Mycotoxins in silage: occurrence, effects, prevention, and mitigation. J. Dairy Sci. 101, 4034–4059 (2018). https://doi.org/10.3168/jds.2017-13788

    Article  Google Scholar 

  2. Casemiro, L.A.; Martins, C.H.; De Souza, F.D.C.P.; Panzeri, H.; Ito, I.Y.: Bacterial, fungal and yeast contamination in six brands of irreversible hydrocolloid impression materials. Braz. Oral Res. 21(2), 106–111 (2007). https://doi.org/10.1590/S1806-83242007000200003

    Article  Google Scholar 

  3. Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr.: Silage review: recent advances and future uses of silage additives. J. Dairy Sci. 101, 3980–4000 (2018). https://doi.org/10.3168/jds.2017-13839

    Article  Google Scholar 

  4. Ferrero, F.; Prencipe, S.; Spadaro, D.; Lodovica Gullino, M.; Cavallarin, L.; Piano, S.; Tabacco, E.; Borreani, G.: Increase in aflatoxins due to Aspergillus section Flavi multiplication during the aerobic deterioration of corn silage treated with different bacteria inoculate. J. Dairy Sci. 102, 1176–1193 (2019). https://doi.org/10.3168/jds.2018-15468

    Article  Google Scholar 

  5. Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J.: Silage review: interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101, 4020–4033 (2018). https://doi.org/10.3168/jds.2017-13909

    Article  Google Scholar 

  6. Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E.: Silage review: factors affecting dry matter and quality losses in silages. J. Dairy Sci. 101, 3952–3979 (2018). https://doi.org/10.3168/jds.2017-13837

    Article  Google Scholar 

  7. Blajman, J.E.; Paez, R.B.; Vinderola, C.G.; Lingua, M.S.; Signorini, M.L.: A meta-analysis on the effectiveness of homofermentative and heterofermentative lactic acid bacteria for corn silage. J. Appl. Microbiol. 125(6), 1655–1669 (2018). https://doi.org/10.1111/jam.14084

    Article  Google Scholar 

  8. Burns, P.; Borgo, M.F.; Binetti, A.; Puntillo, M.; Bergamini, C.; Páez, R.; Vinderola, G.: Isolation, characterization and performance of autochthonous spray dried lactic acid bacteria in maize micro and bucket-silos. Front. Microbiol. 9, 2861 (2018). https://doi.org/10.3389/fmicb.2018.02861

    Article  Google Scholar 

  9. Oliveir, A.S.; Weinberg, Z.G.; Ogunade, I.M.; Cervantes, A.A.P.; Arriola, K.G.; Jiang, Y.; Kim, D.; Li, X.; Gonçalves, M.C.M.; Vyas, D.; Adesogan, A.T.: Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J. Dairy Sci. 100, 4587–4603 (2017). https://doi.org/10.3168/jds.2016-11815

    Article  Google Scholar 

  10. Gerez, C.L.; Torino, M.I.; Rollán, G.; Font de Valdez, G.: Prevention of bread fungi spoilage by using lactic acid bacteria with antifungal properties. Food Control 20, 144–148 (2009). https://doi.org/10.1016/j.foodcont.2008.03.005

    Article  Google Scholar 

  11. Guimarães, A.; Venancio, A.; Abrunhosa, L.: Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum. Food addit. Contam. 35(9), 1803–1818 (2018)

    Article  Google Scholar 

  12. Gupta, R.; Srivastava, S.: Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiol. 42, 1–7 (2014). https://doi.org/10.1016/j.fm.2014.02.005

    Article  Google Scholar 

  13. Deepthi, B.V.; Poornachandra Rao, K.; Chennapa, G.; Naik, M.K.; Chandrashekara, K.T.; Sreenivasa, M.Y.: Antifungal attributes of Lactobacillus plantarum MYS6 against fumonisin producing Fusarium proliferatum associated with poultry feeds. PLoS ONE 11(6), e0155122 (2016). https://doi.org/10.1371/journal.pone.0155122

    Article  Google Scholar 

  14. Dogi, C.A.; Pellegrino, M.; Poloni, V.; Poloni, L.; Pereyra, C.M.; Sanabria, A.; Pianzzola, M.J.; Dalcero, A.; Cavaglieri, L.: Efficacy of corn silage inoculants on the fermentation quality under farm conditions and their influence on Aspergillus parasitucus, A. flavus and A. fumigatus determined by q-PCR. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 32(2), 229–235 (2015). https://doi.org/10.1080/19440049.2014.986223

    Article  Google Scholar 

  15. Li, K.; Fu, S.; Zhan, H.; Zhan, Y.; Lucia, L.: Analysis of the chemical composition and morphological structure of banana pseudo-stem. BioResources 5, 576–585 (2010)

    Google Scholar 

  16. Carvalho, B.F.; Ávila, C.L.S.; Bernardes, T.F.; Pereira, M.N.; Santos, C.; Schwan, R.F.: Fermentation profile and identification of lactic acid bacteria and yeasts of rehydrated corn kernel silage. J. Appl. Microbiol. 122(3), 589–600 (2017). https://doi.org/10.1111/jam.13371

    Article  Google Scholar 

  17. Xu, Z.; Zhang, S.; Zhang, R.; Li, S.; Kong, J.: The changes in dominant lactic acid bacteria and their metabolites during corn stover ensiling. J. Appl. Microbiol. 125(3), 675–685 (2018). https://doi.org/10.1111/jam.139144

    Article  Google Scholar 

  18. Da Silva, N.C.; Nascimento, C.F.; Nascimento, F.A.; De Resende, F.D.; Daniel, J.L.P.; Siqueira, G.R.: Fermentation and aerobic stability of rehydrated corn grain silage treated with different doses of Lactobacillus buchneri or a combination of Lactobacillus plantarum and Pediococcus acidilactici. J. Dairy Sci. 101(5), 4158–4167 (2018). https://doi.org/10.3168/jds.2017-13797

    Article  Google Scholar 

  19. De Man, J.C.; Rogosa, M.; Sharpe, E.M.: A medium for the cultivation of lactobacilli. J. Appl. Microbiol. 23, 130–135 (1960). https://doi.org/10.1111/j.1365-2672.1960.tb00188.x

    Article  Google Scholar 

  20. Gerez, C.L.; Torres, M.J.; Valdez, G.; Rollán, G.: Control of spoilage fungi by lactic acid bacteria. Biol. Control 64, 231–237 (2013). https://doi.org/10.1016/j.biocontrol.2012.10.009

    Article  Google Scholar 

  21. Inglin, R.C.; Stevens, M.J.; Meile, L.; Lacroix, C.; Meile, L.: High-throughput screening assays for antibacterial and antifungal activities of Lactobacillus species. J. Microbiol. Methods 114, 26–29 (2015). https://doi.org/10.1016/j.mimet.2015.04.011

    Article  Google Scholar 

  22. Lavermicocca, P.; Valerio, F.; Visconti, A.: Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl. Environ. Microbiol. 69(1), 634–640 (2003). https://doi.org/10.1128/AEM.69.1.634-640.2003

    Article  Google Scholar 

  23. Dogi, C.A.; Fochesato, A.; Armando, R.; Pribull, B.; De Souza, M.M.; Coelho, I.D.S.; Araújo, D.M.; Dalcero, A.; Cavaglieri, L.: Selection of lactic acid bacteria to promote an efficient silage fermentation capable of inhibiting the activity of Aspergillus parasiticus and Fusarium gramineraum and mycotoxin production. J. Appl. Microbiol. 114(6), 1650–1660 (2013). https://doi.org/10.1111/jam.12173

    Article  Google Scholar 

  24. Muck, R.E.; Filya, I.; Contreras-Govea, F.E.: Inoculant effects on alfalfa silage: in vitro gas and volatile fatty acid production. J. Dairy Sci. 90(11), 5115–5125 (2007). https://doi.org/10.3168/jds.2006-878

    Article  Google Scholar 

  25. Georgieva, R.N.; Iliev, I.N.; Chipeva, V.A.; Dimitonova, S.P.; Samelis, J.; Danova, S.T.: Identification and in vitro characterization of Lactobacillus plantarum strains from artisanal Bulgarian white brined cheeses. J. Basic Microbiol. 48(4), 234–244 (2008). https://doi.org/10.1002/jobm.2007003555

    Article  Google Scholar 

  26. Vázquez Aguilar M.M.: Viabilidad y propiedades fisicoquímicas de leche fermentada probiótica. Maestría en Ciencia de Alimentos. Departamento de Ingeniería Química y Alimentos. Escuela de Ingeniería y Ciencias, Universidad de las Américas Puebla, Mexico. Thesis (2008). http://catarina.udlap.mx/u_dl_a/tales/documentos/mca/vazquez_a_mm/

  27. Muck, R.E.: Recent advances in silage microbiology. Agric. Food Sci. 22, 3–15 (2013). https://doi.org/10.23986/afsci.6718

    Article  Google Scholar 

  28. Pereyra, M.G.; Alonso, V.A.; Sager, R.; Morlaco, M.B.; Magnoli, C.E.; Astoreca, A.L.; Cavaglieri, L.R.: Fungi and selected mycotoxins from pre-and post-fermented corn silage. J. Appl. Microbiol. 104(4), 1034–1041 (2008). https://doi.org/10.1111/j.1365-2672.2007.03634.x

    Article  Google Scholar 

  29. Kabak, B.; Var, I.: The effect of Lactobacillus and Bifidobacterium strains on the growth and AFB 1 production of Aspergillus flavus. Acta Aliment. 33, 371–376 (2004). https://doi.org/10.1556/AAlim.33.2004.4.7

    Article  Google Scholar 

  30. Ben Taheur, F.; Mansour, C.; Kouidhi, B.; Chaieb, K.: Use of lactic acid bacteria for the inhibition of Aspergillus flavus and Aspergillus carbonarius growth and mycotoxin production. Toxicon 166, 15–23 (2019). https://doi.org/10.1016/j.toxicon.2019.05.004

    Article  Google Scholar 

  31. Lipińska, L.; Klewicki, R.; Klewicka, E.; Kołodziejczyk, K.; Sójka, M.; Nowak, A.: Antifungal activity of lactobacillus sp. bacteria in the presence of xylitol and galactosyl-xylitol. BioMed Res. Int. (2016). https://doi.org/10.1155/2016/5897486

    Article  Google Scholar 

  32. Zhang, Q.; Li, X.J.; Zhao, M.M.; Yu, Z.: Isolating and evaluating lactic acid bacteria strains for effectiveness of Leymus chinensis silage fermentation. Lett. Appl. Microbiol. 59(4), 391–397 (2014). https://doi.org/10.1111/lam.12291

    Article  Google Scholar 

  33. Ávila, C.L.S.; Carvalho, B.F.; Pinto, J.C.; Duarte, W.F.; Schwan, R.F.: The use of Lactobacillus species as starter cultures for enhancing the quality of sugar cane silage. Int. J. Dairy Sci 97(2), 940–951 (2014)

    Article  Google Scholar 

  34. Valerio, F.; Di Biase, M.; Lattanzio, V.M.; Lavermicocca, P.: Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid. Int. J. Food Microbiol. 222, 1–7 (2016). https://doi.org/10.1016/j.ijfoodmicro.2016.01.011

    Article  Google Scholar 

  35. Ström, K.; Sjögren, J.; Broberg, A.; Schnürer, J.: Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl. Environ. Microbiol. 68(9), 4322–4327 (2002). https://doi.org/10.1128/AEM.68.9.4322-4327.2002

    Article  Google Scholar 

  36. Magnusson, J.; Ström, K.; Roos, S.; Sjögren, J.; Schnürer, J.: Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol. Lett. 219, 129–135 (2003). https://doi.org/10.1016/S0378-1097(02)01207-7

    Article  Google Scholar 

  37. Coda, R.; Cassone, A.; Rizzello, C.G.; Nionelli, L.; Cardinali, G.; Gobbetti, M.: Antifungal activity of Wickerhamomyces anomalus and Lactobacillus plantarum during sourdough fermentation: identification of novel compounds and long-term effect during storage of wheat bread. Appl. Environ. Microbiol. 77, 3484–3492 (2011). https://doi.org/10.1128/AEM.02669-10

    Article  Google Scholar 

  38. Rizzello, C.; Cassone, A.; Coda, R.; Gobbetti, M.: Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. Food Chem. 127, 952–959 (2011). https://doi.org/10.1016/j.foodchem.2011.01.063

    Article  Google Scholar 

  39. Li, H.; Liu, L.; Zhang, S.; Cui, W.; Lv, J.: Identification of antifungal compounds produced by Lactobacillus casei AST18. Curr. Microbiol. 65, 156–161 (2012). https://doi.org/10.1007/s00284-012-0135-2

    Article  Google Scholar 

  40. Garofalo, C.; Zannini, E.; Aquilanti, L.; Silvestri, G.; Fierro, O.; Picariello, G.; Clementi, F.: Selection of sourdough lactobacilli with antifungal activity for use as biopreservatives in bakery products. J. Agric. Food Chem. 60(31), 7719–7728 (2012). https://doi.org/10.1021/jf301173u

    Article  Google Scholar 

  41. Muhialdin, B.J.; Hassan, Z.; Abu Bakar, F.; Algboory, H.L.; Saari, N.: Novel antifungal peptides produced by Leuconostoc mesenteroides DU15 effectively inhibit growth of Aspergillus niger. J. Food Sci. 80(5), M1026–M1030 (2015). https://doi.org/10.1111/1750-3841.12844

    Article  Google Scholar 

  42. Mitiku, A.A.; Andeta, A.F.; Borremans, A.; Lievens, B.; Bossaert, S.; Crauwels, S.; Van Campenhout, L.: Silage making of maize stover and banana pseudostem under South Ethiopian conditions: evolution of pH, dry matter and microbiological profile. Microb. Biotechnol. 13(5), 1477–1488 (2020). https://doi.org/10.1111/1751-7915.13626

    Article  Google Scholar 

  43. Liu, B.; Yang, Z.; Huan, H.; Gu, H.; Xu, N.; Ding, C.: Impact of molasses and microbial inoculants on fermentation quality, aerobic stability, and bacterial and fungal microbiomes of barley silage. Sci. rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  44. Chen, S.W.; Chang, Y.Y.; Huang, H.Y.; Kuo, S.M.; Wang, H.T.: Application of condensed molasses fermentation solubles and lactic acid bacteria in corn silage production. Agric. Food Sci. 100(6), 2722–2731 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 384), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT 2017 Nº 0786), and Fondo para la Investigación Científica y Tecnológica (FONCyT). We wish to thank Licenses L.C. Pintos (personnel of CONICET-CERELA) for their cooperation.

Funding

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 384), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT 2017 Nº 0786), and Fondo para la Investigación Científica y Tecnológica (FONCyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Luciana Gerez.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrizo, N.I., Carabajal Torrez, J.A., Molina, F.R.E. et al. Selection and Performance of Antifungal Lactic Acid Bacteria in Corn Mini-Silos. Arab J Sci Eng 47, 119–130 (2022). https://doi.org/10.1007/s13369-021-05511-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05511-z

Keywords

Navigation