Skip to main content

Advertisement

Log in

Hybrid Fuzzy Fractional-Order PID-Based Speed Control for Brushless DC Motor

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article presents a novel hybrid control scheme for speed control of Brushless DC (BLDC) motor by simultaneously controlling BLDC motor reference current and inverter DC bus voltage. A fractional-order PID (FOPID) controller is employed to control BLDC motor reference current while a fuzzy logic controller manipulates the inverter DC bus voltage. A modified harmony search (HS) metaheuristic technique is developed for FOPID controller parameters tuning. Three different operating conditions are applied to test the motor, including no-load operation, varying load operation, and varying speed operation to verify the proposed controller’s effectiveness. Furthermore, the proposed hybrid control strategy has been compared to Fuzzy-based and FOPID-based speed control schemes. The obtained results confirm that the proposed control scheme provides better and accurate speed control over a wide range of speeds. Also, the proposed controller decreases the torque ripples under different operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Yedamale, P.: “Brushless DC (BLDC) motor fundamentals,” Microchip Technology Inc., 2003.

  2. Xia, C.L.: Permanent Magnet Brushless DC Motor Drives and Controls. Wiley, New York (2012)

    Book  Google Scholar 

  3. Padula, F.; Visioli, A.: Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control 21(1), 69–81 (2011)

    Article  Google Scholar 

  4. Cajo, R.; Mac, T.T.; Plaza, D.; Copot, C.; De Keyser, R.; Ionescu, C.: A Survey on Fractional Order Control Techniques for Unmanned Aerial and Ground Vehicles. IEEE Access 7, 66864–66878 (2019)

    Article  Google Scholar 

  5. Chen, Y. Q.; Petráš, I.; Xue, D.: “Fractional order control - A tutorial,” In: Proceedings of American Control Conference, pp. 1397–1411 (2009)

  6. Xuet, D.; Chen, Y.: A comparative introduction of four fractional order controllers. In: Proceedings of the 4th World Congress on Intelligent Control and Automation, pp. 3228–3235 (2002)

  7. Termous, H.; Moreau, X.; Francis, C.; Shraim, H.: From the standard PID to the CRONE first generation controller: Application to an anti-roll system for Electric Vehicles. IFAC-PapersOnLine 51(4), 733–738 (2018)

    Article  Google Scholar 

  8. Podlubny, I.: Fractional-order systems and fractional-order controllers. Inst. Exp. Phys., Slovak Acad. Sci. 12(3), 1–18 (1994)

    Google Scholar 

  9. Shah, P.; Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016)

    Article  Google Scholar 

  10. Valério, D.; Sá Da Costa, J.: “A review of tuning methods for fractional PIDs,” In: 4th IFAC Workshop on Fractional Differentiation and its Applications, p. 13 (2010).

  11. Shaheen, A.M.; Spea, S.R.; Farrag, S.M.; Abido, M.A.: A review of meta-heuristic algorithms for reactive power planning problem. Ain Shams Eng. J. 9(2), 215–231 (2018)

    Article  Google Scholar 

  12. Chang, L.Y.; Chen, H.C.: Tuning of fractional PID controllers using adaptive genetic algorithm for active magnetic bearing system. WSEAS Trans. Syst. 8(1), 158–167 (2009)

    Google Scholar 

  13. Aghababa, M.P.: Optimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithm. Soft. Comput. 20(10), 4055–4067 (2016)

    Article  Google Scholar 

  14. Haji Haji, V.; Monje, C.A.: Fractional-order PID control of a chopper-fed DC motor drive using a novel firefly algorithm with dynamic control mechanism. Soft. Comput. 22(18), 6135–6146 (2018)

    Article  Google Scholar 

  15. Li, C.; Zhang, N.; Lai, X.; Zhou, J.; Xu, Y.: Design of a fractional-order PID controller for a pumped storage unit using a gravitational search algorithm based on the Cauchy and Gaussian mutation. Inf. Sci. (Ny) 396, 162–181 (2017)

    Article  Google Scholar 

  16. K. M. Passino; S. Yurkovich, Fuzzy control. 2010.

  17. El-samahy, A.A.; Shamseldin, M.A.: Brushless DC motor tracking control using self-tuning fuzzy PID control and model reference adaptive control. Ain Shams Eng. J. 9(3), 341–352 (2018)

    Article  Google Scholar 

  18. Shamseldin, M.A.; Ghany, M.A.A.; Ghany, A.M.A.: Performance study of enhanced nonlinear PID control applied on brushless DC motor. Int. J. Power Electron. Drive Syst. 9(2), 536–545 (2018)

    Google Scholar 

  19. Gobinath, S.; Madheswaran, M.: Deep perceptron neural network with fuzzy PID controller for speed control and stability analysis of BLDC motor. Soft. Comput. 24(13), 10161–10180 (2020)

    Article  Google Scholar 

  20. Maharajan, M.P.; Xavier, S.A.E.: Design of Speed Control and Reduction of Torque Ripple Factor in BLdc Motor Using Spider Based Controller. IEEE Trans. Power Electron. 34(8), 7826–7837 (2019)

    Article  Google Scholar 

  21. Baharudin, N.N.; Ayob, S.M.: “Brushless DC motor drive control using Single Input Fuzzy PI Controller (SIFPIC),” 2015 IEEE Conf. Energy Conversion, CENCON 2015, 13–18 (2015)

    Google Scholar 

  22. Potnuru, D.; Tummala, A.S.L.V.: Grey wolf optimization-based improved closed-loop speed control for a BLDC motor drive. Smart Innov. Syst. Technol. 104, 145–152 (2019)

    Article  Google Scholar 

  23. Prabhu, P.; Urundady, V.: One-Cycle Controlled Bridgeless SEPIC with Coupled Inductors for PAM Control-Based BLDC Drive. Arab. J. Sci. Eng. 44(8), 6987–7001 (2019)

    Article  Google Scholar 

  24. Khorrami, F.; Krishnamurthy, P.; Melkote, H.: Modeling and Adaptive Nonlinear Control of Electric Motors, 3rd edn, p. 523. Springer Science & Business Media, Berlin (2003)

    Book  Google Scholar 

  25. Geem, Z.W.; Kim, J.H.; Loganathan, G.V.: A New Heuristic Optimization Algorithm: Harmony Search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  26. Geem, Z. (ed.): Music-Inspired Harmony Search Algorithm. Springer, Heidelberg (2009)

  27. Zhang, T.; Geem, Z.W.: Review of harmony search with respect to algorithm structure. Swarm Evol. Comput. 48, 31–43 (2019)

    Article  Google Scholar 

  28. Lee, K.S.; Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194(36–38), 3902–3933 (2005)

    Article  Google Scholar 

  29. Cheng, Y.M.; Li, L.; Lansivaara, T.; Chi, S.C.; Sun, Y.J.: An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis. Eng. Optim. 40(2), 95–115 (2008)

    Article  Google Scholar 

  30. Mahdavi, M.; Fesanghary, M.; Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the support provided by King Fahd University of Petroleum & Minerals through the Direct Fund Project # DF191004. Dr. Abido would also like to acknowledge the funding support provided by King Abdullah City for Atomic and Renewable Energy (K.A.CARE), Energy Research & Innovation Center (ERIC), KFUPM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hussein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A Mohammed Eltoum, M., Hussein, A. & Abido, M.A. Hybrid Fuzzy Fractional-Order PID-Based Speed Control for Brushless DC Motor. Arab J Sci Eng 46, 9423–9435 (2021). https://doi.org/10.1007/s13369-020-05262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05262-3

Keywords

Navigation