Skip to main content
Log in

Adaptive-Slope Squashing-Function-Based ANN for CSI Estimation and Symbol Detection in SFBC-OFDM System

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents an adaptive-slope squashing-function (ASF)-based artificial neural network (ANN) for efficient estimation of smoothly time-varying multipath fading channels, in a \(4 \times 1\) space-frequency-block-coded orthogonal-frequency-division-multiplexing (SFBC-OFDM) system using 64 subcarriers. The channel-state-information (CSI) estimated at first stage is further used for OFDM information symbol detection (through minimum mean square error criterion-based detection) at second stage. To combat the impact of smoothly time-varying environment, we emphasize on the utilization of ASF-ANN using backpropagation (BP) algorithm for the estimation of channel tap coefficients in frequency domain. The underlying ANN is modeled as feedforward multi-layered perceptron that updates the network weights. The major focus is on the gradient-descent algorithm-based adaptation of the slope of squashing-function (SF) along with other ANN parameters, which enhances the training efficiency of ASF-ANN in terms of the lower mean-squared channel estimation error in comparison with the traditional fixed-slope squashing-function (FSF) ANN technique. Simulation results corresponding to the underlying \(4 \times 1\) SFBC-OFDM system are presented to depict that ASF-ANN-based approach outperforms the FSF-ANN technique by providing lower bit-error-rate (BER) due to the usage of well-estimated CSI. At 15 dB SNR and fade rate = 0.001, the average BER reduces to \(2.85 \times 10^{ - 4}\) for the ASF-ANN based approach, due to improved CSI estimation, which accounts for approximately 5% improvement in the detection success rate as compared to the FSF-ANN-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cimini, L.J.: Analysis and simulation of a digital radio channel using orthogonal frequency division multiplexing. IEEE Trans. Commun. 33(7), 665–675 (1985)

    Article  Google Scholar 

  2. Al-Dhahir, N.: Single-carrier frequency-domain equalization for space–time block-coded transmissions over frequency-selective fading channels. IEEE Commun. Lett. 5(7), 304–306 (2001)

    Article  Google Scholar 

  3. Jang, J.-H.; Won, H.-C.; Im, G.-H.: Cyclic prefixed single carrier transmission with SFBC over mobile wireless channels. IEEE Signal Process. Lett. 13(5), 261–264 (2006)

    Article  Google Scholar 

  4. Torabi, M.; Aissa, S.; Soleymani, M.R.: On the BER performance of space-frequency block coded OFDM systems in fading MIMO channels. IEEE Trans. Wirel. Commun. 6(4), 1366–1373 (2007)

    Article  Google Scholar 

  5. Jemmali, A.; Torabi, M.; Conan, J.: Performance analysis of MIMO schemes in 3GPP long term evolution system. Wirel. Pers. Commun. 82(2), 1107–1125 (2015)

    Article  Google Scholar 

  6. Ali, S.S.; Castanheira, D.; Alsohaily, A.; Sousa, E.S.; Silva, A.; Gameiro, A.: Joint space-frequency block codes and signal alignment for heterogeneous networks. IEEE Access 6, 71099–71109 (2018)

    Article  Google Scholar 

  7. Du, Y.; Liu, J.; Chen, Y.: Performance analysis of nonlinear SFBC OFDM systems over TWDP fading channel. IEEE Access 7, 101981–101991 (2019)

    Article  Google Scholar 

  8. Lee, K.F.; Williams, D.B.: Pilot-symbol-assisted channel estimation for space–time coded OFDM systems. EURASIP J. Adv. Signal Process. 2002(5), 374703 (2002)

    Article  Google Scholar 

  9. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)

    Article  Google Scholar 

  10. Van de Beek, J.-J.; Edfors, O.; Sandell, M.; Wilson, S.K.; Borjesson, P.O.: On channel estimation in OFDM systems. In: Proceedings of the IEEE 45th Vehicular Technology Conference (VTC’95), Chicago, USA, vol. 2, pp. 815–819 (1995)

  11. Edfors, O.; Sandell, M.; Van de Beek, J.-J.; Wilson, S.K.; Borjesson, P.O.: OFDM channel estimation by singular value decomposition. IEEE Trans. Commun. 46(7), 931–939 (1998)

    Article  Google Scholar 

  12. Ma, X.; Kobayashi, H.; Schwartz, S.C.: An EM-based channel estimation algorithm for space–time and space–frequency block coded OFDM. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’03), Hong Kong, China, vol. 4, pp. IV-389–392 (2003)

  13. Muruganathan, S.D.; Sesay, A.B.: A low-complexity decision-directed channel-estimation scheme for OFDM systems with space-frequency diversity in doubly selective fading channels. IEEE Trans. Veh. Technol. 58(8), 4277–4291 (2009)

    Article  Google Scholar 

  14. Haykin, S.: Neural Networks and Learning Machines. Prentice-Hall, New Jersey (2009)

    Google Scholar 

  15. Zhou, X.; Wang, X.: Channel estimation for OFDM systems using adaptive radial basis function networks. IEEE Trans. Veh. Technol. 52(1), 48–59 (2003)

    Article  Google Scholar 

  16. Seyman, M.N.; Taspinar, N.: Channel estimation based on neural network with feedback for MIMO OFDM mobile communication systems. Intell. Autom. Soft Comput. 18(3), 307–316 (2012)

    Article  Google Scholar 

  17. Seyman, M.N.; Taspinar, N.: Channel estimation based on neural network in space time block coded MIMO–OFDM system. Digit. Signal Process. 23(1), 275–280 (2013)

    Article  MathSciNet  Google Scholar 

  18. Cui, T.; Tellambura, C.: Channel estimation for OFDM systems based on adaptive radial basis function networks. In: Proceedings of the IEEE 60th Vehicular Technology Conference (VTC’04), Los Angeles, USA, vol. 1, pp. 608–611 (2004)

  19. Ye, H.; Li, G.Y.; Juang, B.: Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wirel. Commun. Lett. 7(1), 114–117 (2018)

    Article  Google Scholar 

  20. Kapoor, D.S.; Kohli, A.K.: Intelligence-based channel equalization for 4 × 1 SFBC-OFDM receiver. Intell. Autom. Soft Comput. 26(3), 439–446 (2020)

    Article  Google Scholar 

  21. Gao, X.; Jin, S.; Wen, C.-K.; Li, G.Y.: ComNet: combination of deep learning and expert knowledge in OFDM receivers. IEEE Commun. Lett. 22(12), 2627–2630 (2018)

    Article  Google Scholar 

  22. Zhang, J.; Wen, C.-K.; Jin, S.; Li, G.Y.: Artificial intelligence-aided receiver for a CP-free OFDM system: design, simulation, and experimental test. IEEE Access 7, 58901–58914 (2019)

    Article  Google Scholar 

  23. Zhang, J.; Cao, Y.; Han, G.; Fu, X.: Deep neural network-based underwater OFDM receiver. IET Commun. 13(13), 1998–2002 (2019)

    Article  Google Scholar 

  24. Burse, K.; Yadav, R.N.; Shrivastava, S.C.: Channel equalization using neural networks: a review. IEEE Trans. Syst. Man Cybern. Part C 40(3), 352–357 (2010)

    Article  Google Scholar 

  25. Xu, S.; Zhang, M.: Justification of a neuron-adaptive activation function. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN’00), Como, Italy, vol. 3, pp. 465–470 (2000)

  26. Liu, T.I.; Anantharaman, K.S.: On-line sensing of drill wear using neural network approach. In: Proceedings of the IEEE International Conference on Neural Networks (ICNN’93), San Francisco, USA, vol. 2, pp. 690–694 (1993)

  27. Vecci, L.; Piazza, F.; Uncini, A.: Learning and approximation capabilities of adaptive spline activation function neural networks. Neural Netw. 11(2), 259–270 (1998)

    Article  Google Scholar 

  28. Yu, C.-C.; Tang, Y.-C.; Liu, B.-D.: An adaptive activation function for multilayer feedforward neural networks. In: Proceedings of the IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering (TENCOM’02), Beijing, China, vol. 1, pp. 645–650 (2002)

  29. Thimm, G.; Moerland, P.; Fiesler, E.: The interchangeability of learning rate and gain in backpropagation neural networks. Neural Comput. 8(2), 451–460 (1996)

    Article  Google Scholar 

  30. Zerdoumi, Z.; Chikouche, D.; Benatia, D.: Multilayer perceptron based equalizer with an improved back propagation algorithm for nonlinear channels. Int. J. Mob. Comput. Multimed. Commun. 7(3), 16–31 (2016)

    Article  Google Scholar 

  31. Ratan, R.; Sharma, S.; Kohli, A.K.: Performance comparison of quadrature amplitude modulation (QAM)-based single- and double-stage digital interpolators. Int. J. Electron. 100(12), 1724–1734 (2013)

    Article  Google Scholar 

  32. Jafarkhani, H.: A quasi-orthogonal space-time block code. IEEE Trans. Commun. 49(1), 1–4 (2001)

    Article  Google Scholar 

  33. Kohli, A.K.; Kapoor, D.S.: Adaptive filtering techniques using cyclic prefix in OFDM systems for multipath fading channel prediction. Circuits Syst. Signal Process. 35(10), 3595–3618 (2016)

    Article  MathSciNet  Google Scholar 

  34. Kohli, A.K.; Mehra, D.K.: Tracking of time-varying channels using two-step LMS-type adaptive algorithm. IEEE Trans. Signal Process. 54(7), 2606–2615 (2006)

    Article  Google Scholar 

  35. Rouquette, S.; Merigeault, S.; Gosse, K.: Orthogonal full diversity space-time block coding based on transmit channel state information for 4 Tx antennas. In: Proceedings of the IEEE International Conference on Communications (ICC’02), New York, USA, vol. 1, pp. 558–562 (2002)

  36. Cho, Y.S.; Kim, J.; Yang, W.Y.; Kang, C.G.: MIMO-OFDM Wireless Communications with MATLAB®. Wiley, UK (2010)

    Book  Google Scholar 

  37. Yang, B.; Letaief, K.B.; Cheng, R.S.; Cao, Z.: Channel estimation for OFDM transmission in multipath fading channels based on parametric channel modeling. IEEE Trans. Commun. 49(3), 467–479 (2001)

    Article  Google Scholar 

  38. Morelli, M.; Sanguinetti, L.: Estimation of channel statistics for iterative detection of OFDM signals. IEEE Trans. Wirel. Commun. 4(4), 1360–1365 (2005)

    Article  Google Scholar 

  39. Proakis, J.G.: Digital Communications, 3rd edn. McGraw-Hill, New York (1995)

    MATH  Google Scholar 

  40. Eraslan, E.; Daneshrad, B.; Lou, C.: Performance indicator for MIMO MMSE receivers in the presence of channel estimation error. IEEE Wirel. Commun. Lett. 2(2), 211–214 (2013)

    Article  Google Scholar 

  41. Nawaz, S.J.; Mohsin, S.; Ikaram, A.A.: Neural network based MIMO-OFDM channel equalizer using comb-type pilot arrangement. In: Proceedings of the International Conference on Future Computer and Communication (ICFCC’09), Kuala Lumpar, Malaysia, pp. 36–41 (2009)

  42. Chandra, P.; Singh, Y.: An activation function adapting training algorithm for sigmoidal feedforward networks. Neurocomputing 61(C), 429–437 (2004)

    Article  Google Scholar 

  43. Rappaport, T.: Wireless Communications: Principles and Practice, 2nd edn. Prentice Hall, USA (2001)

    MATH  Google Scholar 

  44. Kohli, A.K.; Mehra, D.K.: Adaptive DFE multiuser receiver for CDMA systems using two-step LMS-type algorithm: an equalization approach. Wirel. Pers. Commun. 54(3), 543–558 (2010)

    Article  Google Scholar 

  45. Kapoor, D.S.; Kohli, A.K.: Impact of squashing function’s slope on ANN based channel estimation in SFBC-OFDM system. In: Proceedings of the 12th International Conference on Computational Intelligence and Communication Networks (CICN’20), Bhimtal, India, pp. 258–260 (2020)

  46. Chen, C.-T.; Chang, W.-D.: A feedforward neural network with function shape autotuning. Neural Netw. 9(4), 627–641 (1996)

    Article  Google Scholar 

  47. Zerdoumi, Z.; Chicouche, D.; Benatia, D.: Neural networks based equalizer for signal restoration in digital communication channels. Int. Lett. Chem. Phys. Astron. 55, 187–200 (2015)

    Article  Google Scholar 

  48. Kapoor, D.S.; Kohli, A.K.: Channel estimation and long-range prediction of fast fading channels for adaptive OFDM system. Int. J. Electron. 105(9), 1451–1466 (2018)

    Article  Google Scholar 

  49. Sehrawat, S.; Kohli, A.K.: Optimized mitigation of impulsive noise in OFDM system using CSI. Optik 127(20), 9627–9634 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Kohli.

Appendix

Appendix

1.1 Brief Details About LMMSE-Based Channel Estimation for SFBC-OFDM System

Let the received symbol vector in underlying SFBC-OFDM system be

$${\mathbf{Y}} = {\mathbf{HX}} + {\mathbf{W}}$$
(34)

(subscripts and indices in Eq. (4) are not shown for mathematical convenience).

As per conventional LS channel estimation method, the following cost function is minimized to provide optimum LS solution

$$J({\hat{\mathbf{H}}}_{LS} ) = \left\| {{\mathbf{Y}} - {\mathbf{X\hat{H}}}_{LS} } \right\|^{2}$$
(35)

where \({\hat{\mathbf{H}}}_{LS}\) is the LS estimated channel vector. However, the above function can also be rewritten as

$$\begin{aligned} J({\hat{\mathbf{H}}}_{LS} ) & = ({\mathbf{Y}} - {\mathbf{X\hat{H}}}_{LS} )^{H} ({\mathbf{Y}} - {\mathbf{X\hat{H}}}_{LS} ) \\ & = {\mathbf{Y}}^{H} {\mathbf{Y}} - {\mathbf{Y}}^{H} {\mathbf{X\hat{H}}}_{LS} - {\hat{\mathbf{H}}}^{H}_{LS} {\mathbf{X}}^{H} {\mathbf{Y}} + {\hat{\mathbf{H}}}^{H}_{LS} {\mathbf{X}}^{H} {\mathbf{X\hat{H}}}_{LS} \\ \end{aligned}$$
(36)

In order to find the optimum value \({\hat{\mathbf{H}}}_{LS}\), for which the cost function in Eq. (35) gets minimized, the derivative of cost function with respect to the estimated channel vector needs to be calculated and equated to zero. It results in

$$\frac{{\partial J({\hat{\mathbf{H}}}_{LS} )}}{{\partial {\hat{\mathbf{H}}}_{LS} }} = - 2\left( {{\mathbf{X}}^{H} {\mathbf{Y}}} \right)^{*} + 2\left( {{\mathbf{X}}^{H} {\mathbf X}{\hat{\mathbf{H}}}_{LS} } \right)^{*} = 0$$
(37)

where \((.)^{*}\) is the complex conjugation operator. The mathematical simplification of above equation leads to

$${\hat{\mathbf{H}}}_{LS} = \left( {{\mathbf{X}}^{H} {\mathbf{X}}} \right)^{ - 1} {\mathbf{X}}^{H} {\mathbf{Y}}$$
(38)

This can also be expressed as

$$\begin{aligned} {\hat{\mathbf{H}}}_{LS} & = \left( {{\mathbf{X}}^{H} {\mathbf{X}}} \right)^{ - 1} {\mathbf{X}}^{H} \left[ {{\mathbf{XH}} + {\mathbf{W}}} \right] \\ & = {\mathbf{H}} + \left( {{\mathbf{X}}^{H} {\mathbf{X}}} \right)^{ - 1} {\mathbf{X}}^{H} {\mathbf{W}} \\ \end{aligned}$$
(39)

As the underlying system utilizes QO-codes, the matrix \({\mathbf{X}}^{H} {\mathbf{X}}\) is not purely diagonal, and therefore it contains some off-diagonal entries as well. Considering the LS estimate in (38), a better linear estimate in terms of weighted LS estimate can be applied by using the LMMSE channel estimation method, as suggested in [36]. This method finds a linear estimate to minimize the following error function

$$J\left( {{\hat{\mathbf{H}}}_{MM} } \right) = E\left[ {\left\|{\mathbf \psi} \right\|^{2} } \right] = E\left[ {\left\| {{\mathbf{H}} - {\hat{\mathbf{H}}}_{MM} } \right\|^{2} } \right]$$
(40)

where \({\hat{\mathbf{H}}}_{MM} = {\mathbf{W}}_{MM} {\hat{\mathbf{H}}}_{LS}\) is the LMMSE estimate. As the estimation error \(\mathbf\psi\) is orthogonal to \({\hat{\mathbf{H}}}_{LS}\), therefore \(E\left[ {{\mathbf{\psi \hat{H}}}^{H}_{LS} } \right] = 0\). It follows that

$$\begin{aligned} E\left[ {{\mathbf{\psi \hat{H}}}^{H}_{LS} } \right] & = E\left[ {\left( {{\mathbf{H}} - {\hat{\mathbf{H}}}_{MM} } \right){\hat{\mathbf{H}}}^{H}_{LS} } \right] \\ & = E\left[ {\left( {{\mathbf{H}} - {\mathbf W}_{MM} {\hat{\mathbf{H}}}_{LS} } \right){\hat{\mathbf{H}}}^{H}_{LS} } \right] \\ & = E\left[ {{\mathbf{H\hat{H}}}^{H}_{LS} } \right] - {\mathbf W}_{MM} E\left[ {{\hat{\mathbf{H}}}_{LS} {\hat{\mathbf{H}}}^{H}_{LS} } \right] \\ & = {\mathbf R}_{{{\mathbf{H\hat{H}}}_{LS} }} - {\mathbf W}_{MM} {\mathbf R}_{{{\hat{\mathbf{H}}}_{LS} {\hat{\mathbf{H}}}_{LS} }} \\ \end{aligned}$$
(41)

where \({\mathbf{R}}_{{{\mathbf{H\hat{H}}}_{LS} }}\) is the cross-correlation matrix between true channel vector and LS estimated channel vector, and \({\mathbf{R}}_{{{\hat{\mathbf{H}}}_{LS} {\hat{\mathbf{H}}}_{LS} }}\) is the auto-correlation matrix of LS estimated channel vector. Further solution of Eq. (41) yields

$${\mathbf{W}}_{MM} = {\mathbf{R}}_{{{\mathbf{H\hat{H}}}_{LS} }} {\mathbf{R}}_{{{\hat{\mathbf{H}}}_{LS} {\hat{\mathbf{H}}}_{LS} }}^{ - 1}$$
(42)

Using Eq. (39), it can be shown that the auto-correlation matrix \({\mathbf{R}}_{{{\hat{\mathbf{H}}}_{LS} {\hat{\mathbf{H}}}_{LS} }}\) is

$$\begin{aligned} {\mathbf{R}}_{{{\hat{\mathbf{H}}}_{LS} {\hat{\mathbf{H}}}_{LS} }} & = E\left[ {{\hat{\mathbf{H}}}_{LS} {\hat{\mathbf{H}}}^{H}_{LS} } \right] \\ & = E\left[ {\left( {{\mathbf{H}} + \left( {{\mathbf{X}}^{H} {\mathbf{X}}} \right)^{ - 1} {\mathbf{X}}^{H} {\mathbf W}} \right)\left( {{\mathbf{H}} + \left( {{\mathbf{X}}^{H} {\mathbf{X}}} \right)^{ - 1} {\mathbf{X}}^{H} {\mathbf W}} \right)^{H} } \right] \\ & = E\left[ {{\mathbf{HH}}^{H} } \right] + E\left[ {\left( {{\mathbf{X}}^{H} {\mathbf{X}}} \right)^{ - 1} {\mathbf{W}}^{H} {\mathbf{W}}} \right] \\ & = {\mathbf {R}}_{{{\mathbf{HH}}}} + \sigma_{w}^{2} \left( {{\mathbf{X}}^{H} {\mathbf{X}}} \right)^{ - 1} \\ \end{aligned}$$
(43)

However, the cross-correlation matrix \({\mathbf{R}}_{{{\mathbf{H\hat{H}}}_{LS} }}\) is found to be

$$\begin{aligned} {\mathbf{R}}_{{{\mathbf{H\hat{H}}}_{LS} }} & = E\left[ {{\mathbf{H\hat{H}}}^{H}_{LS} } \right] \\ & = E\left[ {{\mathbf{H}}\left( {{\mathbf{H}} + \left( {{\mathbf{X}}^{H} {\mathbf{X}}} \right)^{ - 1} {\mathbf{X}}^{H} {\mathbf{W}}} \right)^{H} } \right] \\ & = E\left[ {{\mathbf{HH}}^{H} } \right] + E\left[ {{\mathbf{HW}}^{H} {\mathbf{X}}\left( {{\mathbf{XX}}^{H} } \right)^{ - 1} } \right] \\ & \approx \;{\mathbf{R}}_{{{\mathbf{HH}}}} \\ \end{aligned}$$
(44)

Subsequently, the LMMSE channel estimates using Eqs. (38), (42), (43) and (44) are expressed as

$${\hat{\mathbf{H}}}_{MM} = {\mathbf{R}}_{{{\mathbf{HH}}}} \left\{ {{\mathbf{R}}_{{{\mathbf{HH}}}} + \sigma_{w}^{2} \left( {{\mathbf{X}}^{H} {\mathbf{X}}} \right)^{ - 1} } \right\}^{ - 1} {\hat{\mathbf{H}}}_{LS}$$
(45)
$$= {\mathbf{R}}_{{{\mathbf{HH}}}} \left\{ {{\mathbf{R}}_{{{\mathbf{HH}}}} + \sigma_{w}^{2} \left( {{\mathbf{X}}^{H} {\mathbf{X}}} \right)^{ - 1} } \right\}^{ - 1} \left( {{\mathbf{X}}^{H} {\mathbf{X}}} \right)^{ - 1} {\mathbf{X}}^{H} {\mathbf{Y}}$$
(46)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, D.S., Kohli, A.K. Adaptive-Slope Squashing-Function-Based ANN for CSI Estimation and Symbol Detection in SFBC-OFDM System. Arab J Sci Eng 46, 9451–9464 (2021). https://doi.org/10.1007/s13369-020-05207-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05207-w

Keywords

Navigation