Skip to main content
Log in

Protection of Phaseolus vulgaris L. from Herbicide 2,4-D Results from Exposing Seeds to Humic Acid

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Bean (Phaseolus vulgaris L.) is the world’s most significant and basic legume crop for people diet. The intense use of the herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D) in bean planting areas can lead to a number of toxicological issues. To prevent such damages, humic acid (HA) may be used to increase plant development by improving nutrient uptake and to play a protecting role against stresses by regulating the antioxidative system of plants. Hence, the aim of the current study was to investigate the impacts of HA on DNA damage levels and DNA methylation changes against 2,4-D stress in the bean. HA treatments were applied to bean seedlings, and the 2,4-D was sprayed on the three-to-four-leaf stages at 2,4-D dose. We used random amplified polymorphic DNA (RAPD) for determining the changes in DNA damage and coupled restriction enzyme digestion-random amplification (CRED-RA) for DNA methylation changes. According to results, while the genomic template stability (GTS) decreased in the 2,4-D (5, 10, 20 and 40 mg/L) treatments, this value increased comparatively in the 2,4-D applied together with HA (0, 2, 4, 6, 8 and 10 mg/L) treatments. In CRED-RA patterns, as the HA doses were increased, there was generally a decrease in polymorphism rates (DNA methylation changes) caused by 2,4-D applications. Our results have clearly demonstrated that HA has a curative effect up to a level against genotoxic and DNA methylation changes caused by 2,4-D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wetzel, R.G.: Limnology: Lake and River Ecosystems. Gulf professional publishing, Houston (2001)

    Google Scholar 

  2. Demir, E.; Çimrin, K.M.: Arıtma çamuru ve humik asit uygulamalarının mısırın gelisimi, besin elementi ve agır metal icerikleri ile bazı toprak özelliklerine etkileri. (2011).

  3. Nardi, S.; Carletti, P.; Pizzeghello, D.; Muscolo, A.: Biological activities of humic substances. Biophys. Chem. Process. Involv. Nat. Nonliving Org. Matter Environ. Syst. 2 (part 1), 305–339 (2009)

    Article  Google Scholar 

  4. Zhang, X.; Ervin, E.: Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci. 44(5), 1737–1745 (2004)

    Article  Google Scholar 

  5. Arancon, N.Q.; Edwards, C.A.; Lee, S.; Byrne, R.: Effects of humic acids from vermicomposts on plant growth. Eur. J. soil Biol. 42, S65–S69 (2006)

    Article  Google Scholar 

  6. Sánchez-Marín, P.; Aierbe, E.; Lorenzo, J.I.; Mubiana, V.K.; Beiras, R.; Blust, R.: Dynamic modeling of copper bioaccumulation by Mytilus edulis in the presence of humic acid aggregates. Aquat. Toxicol. 178, 165–170 (2016)

    Article  Google Scholar 

  7. Chen, W.; Ouyang, Z.-Y.; Qian, C.; Yu, H.-Q.: Induced structural changes of humic acid by exposure of polystyrene microplastics: a spectroscopic insight. Environ. Pollut. 233, 1–7 (2018)

    Article  Google Scholar 

  8. Tan, L.; Wang, X.; Tan, X.; Mei, H.; Chen, C.; Hayat, T.; Alsaedi, A.; Wen, T.; Lu, S.; Wang, X.: Bonding properties of humic acid with attapulgite and its influence on U (VI) sorption. Chem. Geol. 464, 91–100 (2017)

    Article  Google Scholar 

  9. Cuprys, A.; Pulicharla, R.; Lecka, J.; Brar, S.K.; Drogui, P.; Surampalli, R.Y.: Ciprofloxacin-metal complexes–stability and toxicity tests in the presence of humic substances. Chemosphere 202, 549–559 (2018)

    Article  Google Scholar 

  10. Rashid, M.; Sterbinsky, G.E.; Pinilla, MAnG; Cai, Y.; O’Shea, K.E.: Kinetic and mechanistic evaluation of inorganic arsenic species adsorption onto humic acid grafted magnetite nanoparticles. J. Phys. Chem. C 122(25), 13540–13547 (2018)

    Article  Google Scholar 

  11. Haider, G.; Koyro, H.-W.; Azam, F.; Steffens, D.; Müller, C.; Kammann, C.: Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant Soil 395(1–2), 141–157 (2015)

    Article  Google Scholar 

  12. Senesi, N.; La Cava, P.; Miano, T.M.: Adsorption of imazethapyr to amended and nonamended soils and humic acids. J. Environ. Qual. 26(5), 1264–1270 (1997)

    Article  Google Scholar 

  13. Yigider, E.; Taspinar, M.S.; Sigmaz, B.; Aydin, M.; Agar, G.: Humic acids protective activity against manganese induced LTR (long terminal repeat) retrotransposon polymorphism and genomic instability effects in Zea mays. Plant gene 6, 13–17 (2016)

    Article  Google Scholar 

  14. Qin, K.; Leskovar, D.I.: Lignite-derived humic substances modulate pepper and soil-biota growth under water deficit stress. J Plant Nutr. Soil Sci 181(5), 655–663 (2018). https://doi.org/10.1002/jpln.201800078

    Article  Google Scholar 

  15. Yildiztekin, M.; Tuna, A.L.; Kaya, C.: Physiological effects of the brown seaweed Ascophyllum nodosum) and humic substances on plant growth, enzyme activities of certain pepper plants grown under salt stress. Acta Biol. Hung. 69(3), 325–335 (2018)

    Article  Google Scholar 

  16. Bezuglova, O.S.; Gorovtsov, A.V.; Polienko, E.A.; Zinchenko, V.E.; Grinko, A.V.; Lykhman, V.A.; Dubinina, M.N.; Demidov, A.: Effect of humic preparation on winter wheat productivity and rhizosphere microbial community under herbicide-induced stress. J Soil Sediment 19(6), 2665–2675 (2019). https://doi.org/10.1007/s11368-018-02240-z

    Article  Google Scholar 

  17. Ali, A.Y.A.; Ibrahim, M.E.H.; Zhou, G.; Nimir, N.E.A.; Jiao, X.; Zhu, G.; Elsiddig, A.M.I.; Zhi, W.; Chen, X.; Lu, H.: Ameliorative effects of jasmonic acid and humic acid on antioxidant enzymes and salt tolerance of forage sorghum under salinity conditions. Agron. J. 111(6), 1–10 (2019)

    Article  Google Scholar 

  18. Koukal, B.; Gueguen, C.; Pardos, M.; Dominik, J.: Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata. Chemosphere 53(8), 953–961 (2003)

    Article  Google Scholar 

  19. Suhett, A.L.; Steinberg, C.E.; Santangelo, J.M.; Bozelli, R.L.; Farjalla, V.F.: Natural dissolved humic substances increase the lifespan and promote transgenerational resistance to salt stress in the cladoceran Moina macrocopa. Environ. Sci. Pollut. Res. 18(6), 1004–1014 (2011)

    Article  Google Scholar 

  20. Shah, Z.H.; Rehman, H.M.; Akhtar, T.; Alsamadany, H.; Hamooh, B.T.; Mujtaba, T.; Daur, I.; Al Zahrani, Y.; Alzahrani, H.A.; Ali, S.: Humic substances: determining potential molecular regulatory processes in plants. Front. Plant Sci. 9, 263 (2018)

    Article  Google Scholar 

  21. Yildirim, N.; Agar, G.; Taspinar, M.S.; Turan, M.; Aydin, M.; Arslan, E.: Protective role of humic acids against dicamba-induced genotoxicity and DNA methylation in Phaseolus vulgaris L. Acta Agric. Scand. Sect. B-Soil Plant Sci. 64(2), 141–148 (2014)

    Google Scholar 

  22. Menzel, S.; Bouchnak, R.; Menzel, R.; Steinberg, C.E.W.: Dissolved humic substances initiate DNA-methylation in cladocerans. Aquat. Toxicol. 105(3–4), 640–642 (2011). https://doi.org/10.1016/j.aquatox.2011.08.025

    Article  Google Scholar 

  23. Romero-Puertas, M.; McCarthy, I.; Gómez, M.; Sandalio, L.; Corpas, F.; Del Rio, L.; Palma, J.: Reactive oxygen species-mediated enzymatic systems involved in the oxidative action of 2, 4-dichlorophenoxyacetic acid. Plant, Cell Environ. 27(9), 1135–1148 (2004)

    Article  Google Scholar 

  24. Pazmino, D.M.; Rodriguez-Serrano, M.; Romero-Puertas, M.C.; Archilla-Ruiz, A.; Del Rio, L.A.; Sandalio, L.M.: Differential response of young and adult leaves to herbicide 2,4-dichlorophenoxyacetic acid in pea plants: role of reactive oxygen species. Plant, Cell Environ. 34(11), 1874–1889 (2011). https://doi.org/10.1111/j.1365-3040.2011.02383.x

    Article  Google Scholar 

  25. Raghavan, V.: Role of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2, 4-D. Am. J. Bot. 91(11), 1743–1756 (2004)

    Article  Google Scholar 

  26. Pazmino, D.M.; Rodriguez-Serrano, M.; Sanz, M.; Romero-Puertas, M.C.; Sandalio, L.M.: Regulation of epinasty induced by 2,4-dichlorophenoxyacetic acid in pea and Arabidopsis plants. Plant Biol. 16(4), 809–818 (2014). https://doi.org/10.1111/plb.12128

    Article  Google Scholar 

  27. McCarthy-Suárez, I.; Gómez, M.; Del Río, L.; Palma, J.: Role of peroxisomes in the oxidative injury induced by 2, 4-dichlorophenoxyacetic acid in leaves of pea plants. Biol. Plant. 55(3), 485–492 (2011)

    Article  Google Scholar 

  28. Turkula, T.; Jalal, S.: Increased rates of sister chromatid exchanges induced by the herbicide 2, 4-D. J. Hered. 76(3), 213–214 (1985)

    Article  Google Scholar 

  29. De Moliner, K.; De Duffard, A.E.; Soto, E.; Duffard, R.; Adamo, A.: Induction of apoptosis in cerebellar granule cells by 2, 4-dichlorophenoxyacetic acid. Neurochem. Res. 27(11), 1439–1446 (2002)

    Article  Google Scholar 

  30. Filkowski, J.; Besplug, J.; Burke, P.; Kovalchuk, I.; Kovalchuk, O.: Genotoxicity of 2, 4-D and dicamba revealed by transgenic Arabidopsis thaliana plants harboring recombination and point mutation markers. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 542(1–2), 23–32 (2003)

    Article  Google Scholar 

  31. Leljak-Levanić, D.; Bauer, N.; Mihaljević, S.; Jelaska, S.: Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. Plant Cell Rep. 23(3), 120–127 (2004)

    Article  Google Scholar 

  32. Pavokovic, D.; Krsnik-Rasol, M.: Protein glycosylation in sugar beet cell line can be influenced by DNA hyper- and hypomethylating agents. Acta Bot. Croat. 71(1), 1–12 (2012). https://doi.org/10.2478/v10184-011-0054-5

    Article  Google Scholar 

  33. Martin, F.: Humic acids from lignite. 1. Analytical characteristics and thermal degradation. Fuel 54(4), 236–240 (1975)

    Article  Google Scholar 

  34. Taspinar, M.S.; Sigmaz, B.; Aydin, M.; Arslan, E.; Guleray, A.: Alleviative role of Β-Estradiol against 2, 4-dichlorophenoxyacetic acid genotoxicity on common bean genome. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 28(1), 1–9 (2018)

    Article  Google Scholar 

  35. Erturk, F.A.; Agar, G.; Arslan, E.; Nardemir, G.; Aydin, M.; Taspinar, M.S.: Effects of lead sulfate on genetic and epigenetic changes, and endogenous hormone levels in corn (Zea mays L.). Pol. J. Environ. Stud. 23, 1925–1932 (2014)

    Google Scholar 

  36. Atienzar, F.A.; Conradi, M.; Evenden, A.J.; Jha, A.N.; Depledge, M.H.: Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo [a] pyrene. Environ. Toxicol. Chem Int. J. 18(10), 2275–2282 (1999)

    Google Scholar 

  37. Bhat, S.V.; Booth, S.C.; Vantomme, E.A.; Afroj, S.; Yost, C.K.; Dahms, T.E.: Oxidative stress and metabolic perturbations in Escherichia coli exposed to sublethal levels of 2, 4-dichlorophenoxyacetic acid. Chemosphere 135, 453–461 (2015)

    Article  Google Scholar 

  38. Christoffoleti, P.J.; Figueiredo, MRAd; Peres, L.E.P.; Nissen, S.; Gaines, T.: Auxinic herbicides, mechanisms of action, and weed resistance: a look into recent plant science advances. Sci. Agric. 72(4), 356–362 (2015)

    Article  Google Scholar 

  39. Bukowska, B.: Toxicity of 2, 4-dichlorophenoxyacetic acid-molecular mechanisms. Pol J Environ. Stud. 15(3), 365–374 (2006)

    Google Scholar 

  40. Özkul, M.; Özel, Ç.A.; Yüzbaşıoğlu, D.; Ünal, F.: Does 2, 4-dichlorophenoxyacetic acid (2, 4-D) induce genotoxic effects in tissue cultured Allium roots? Cytotechnology 68(6), 2395–2405 (2016)

    Article  Google Scholar 

  41. Loomis, D.; Guyton, K.; Grosse, Y.; El Ghissasi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K.: Carcinogenicity of lindane, DDT, and 2, 4-dichlorophenoxyacetic acid. Lancet Oncol. 16(8), 891 (2015)

    Article  Google Scholar 

  42. Grabińska-Sota, E.; Wiśniowska, E.; Kalka, J.: Toxicity of selected synthetic auxines—2, 4-D and MCPA derivatives to broad-leaved and cereal plants. Crop Prot. 22(2), 355–360 (2003)

    Article  Google Scholar 

  43. Finnegan, E.J.; Peacock, W.J.; Dennis, E.S.: DNA methylation, a key regulator of plant development and other processes. Curr. Opin. Genet. Dev. 10(2), 217–223 (2000)

    Article  Google Scholar 

  44. Klöti, A.; He, X.; Potrykus, I.; Hohn, T.; Fütterer, J.: Tissue-specific silencing of a transgene in rice. Proc. Natl. Acad. Sci. 99(16), 10881–10886 (2002)

    Article  Google Scholar 

  45. Canellas, L.; Teixeira Junior, L.; Dobbss, L.; Silva, C.; Medici, L.; Zandonadi, D.; Façanha, A.: Humic acids crossinteractions with root and organic acids. Ann. Appl. Biol. 153(2), 157–166 (2008)

    Google Scholar 

  46. Eyheraguibel, B.; Silvestre, J.; Morard, P.: Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Biores. Technol. 99(10), 4206–4212 (2008)

    Article  Google Scholar 

  47. Vasconcelos, ACFd; Zhang, X.; Ervin, E.H.; Kiehl, JdC: Enzymatic antioxidant responses to biostimulants in maize and soybean subjected to drought. Sci. Agric. 66(3), 395–402 (2009)

    Article  Google Scholar 

  48. Pinos, N.; Berbara, R.; Tavares, O.; García, A.: Different structures in humic substances lead to impaired germination but increased protection against saline stress in corn. Commun. Soil Sci. Plant Anal. 50(17), 2209–2225 (2019)

    Article  Google Scholar 

  49. Vlčková, Z.; Grasset, L.; Antošová, B.; Pekař, M.; Kučerík, J.: Lignite pre-treatment and its effect on bio-stimulative properties of respective lignite humic acids. Soil Biol. Biochem. 41(9), 1894–1901 (2009)

    Article  Google Scholar 

  50. Kulikova, N.; Stepanova, E.; Koroleva, O.: Mitigating activity of humic substances: direct influence on biota. In: Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice. pp. 285–309. Springer, (2005)

  51. Ferrara, G.; Loffredo, E.; Simeone, R.; Senesi, N.: Evaluation of antimutagenic and desmutagenic effects of humic and fulvic acids on root tips of Vicia faba. Environ. Toxicol. Int. J. 15(5), 513–517 (2000)

    Article  Google Scholar 

  52. Ferrara, G.; Loffredo, E.; Senesi, N.; Marcos, R.: Humic acids reduce the genotoxicity of mitomycin C in the human lymphoblastoid cell line TK6. Mutat. Res. Genetic Toxicol. Environ. Mutagen. 603(1), 27–32 (2006)

    Article  Google Scholar 

  53. Concheri, G.; Nardi, S.; Piccolo, A.; Rascio, N.; Dell’Agnola, G.: Effects of humic fractions on morphological changes related to invertase and peroxidase activities in wheat seedlings. In: Senesi, N., Miano, T.M. (eds.) Humic Substances in the Global Environment and Implications on Human Health, pp. 257–262. Elsevier, Amsterdam (1994)

    Google Scholar 

  54. Akçin, A.; Akçin, T.A.: Protective effects of humic acid on chlorophyll and malondialdehyde content in a bread wheat (Triticum aestivum L. cv. Delabrad-2) treated with chromium stress. J. Int. Environ. Appl. Sci. 14(2), 50–58 (2019)

    Google Scholar 

  55. Tan, M.-p: Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol. Biochem. 48(1), 21–26 (2010)

    Article  Google Scholar 

  56. Menzel, R.; Sturzenbaum, S.; Barenwaldt, A.; Kulas, J.; Steinberg, C.E.W.: Humic material induces behavioral and global transcriptional responses in the nematode Caenorhabditis elegans. Environ. Sci. Technol. 39(21), 8324–8332 (2005). https://doi.org/10.1021/es050884s

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Sinan Taspinar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, M., Arslan, E., Yigider, E. et al. Protection of Phaseolus vulgaris L. from Herbicide 2,4-D Results from Exposing Seeds to Humic Acid. Arab J Sci Eng 46, 163–173 (2021). https://doi.org/10.1007/s13369-020-04893-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04893-w

Keywords

Navigation