Skip to main content
Log in

Fabrication of Graphene by Electrochemical Intercalation Method and Performance of Graphene/PVA Composites as Stretchable Strain Sensor

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Strain sensors fabricated from polymer and graphene composites are gaining attention due to its peculiar electrical and mechanical properties. Here, we used electrochemical intercalation method to produce graphene. Graphene/PVA composite intended for use as stretchable strain sensor was fabricated using different amounts of graphene. In addition, the effect of the applied electrochemical bias method on the properties of exfoliated graphene was investigated. Results showed that use of applied bias produced thinner graphene with low defect and better thermal stability compared to 10 V applied voltage. Notably, the electrical conductivity of the graphene obtained at 5 V applied voltage (2.53 × 10−1 S/cm) is higher than that of 10 V applied bias (6.33 × 10−2 S/cm). Significantly, incorporation of graphene produced at 5 V into PVA results in five-order increase in electrical conductivity of the composite film from 0.1 to 0.5 wt% graphene. In addition, the hysteresis and sensitivity performance of the sensor produced by 0.5 wt% of graphene loading is better than that of sensors with lower amount of graphene loadings. Therefore, the sensor produced by 0.5 wt% of graphene loading has a potential to be used as wearable sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zha, J.W.; Zhang, B.; Li, R.K.; Dang, Z.M.: High-performance strain sensors based on functionalized graphene nanoplates for damage monitoring. Compos. Sci. Technol. 123, 32–38 (2016)

    Article  Google Scholar 

  2. Hassan, G.; Bae, J.; Hassan, A.; Ali, S.; Lee, C.H.; Choi, Y.: Ink-jet printed stretchable strain sensor based on graphene/ZnO composite on micro-random ridged PDMS substrate. Compos. Part A Appl. Sci. Manuf. 107(107), 519–528 (2018)

    Article  Google Scholar 

  3. Zhang, Y.; Shi, G.; Qin, J.; Lowe, S.E.; Zhang, S.; Zhao, H.; Zhong, Y.L.: Recent progress of direct ink writing of electronic components for advanced wearable devices. ACS Appl. Electron. Mater. 1(9), 1718–1734 (2019)

    Article  Google Scholar 

  4. Shengbo, S.; Lihua, L.; Aoqun, J.; Qianqian, D.; Jianlong, J.; Qiang, Z.; Wendong, Z.: Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles. J. Nanotechnol. 29, 255202 (2018)

    Article  Google Scholar 

  5. Wu, X.; Mu, F.; Zhao, H.: Recent progress in the synthesis of graphene/CNT composites and the energy-related applications. J. Mater. Res. Technol. 55, 16–34 (2019)

    Google Scholar 

  6. Güler, Ö.; Bağcı, N.: A short review on mechanical properties of graphene reinforced metal matrix composites. J. Mater. Res. Technol. 9, 6808–6833 (2020)

    Article  Google Scholar 

  7. Nag, A.; Mitra, A.; Mukhopadhyay, S.C.: Graphene and its sensor-based applications: a review. Sens. Actuat. A-Phys. 270, 177–194 (2018)

    Article  Google Scholar 

  8. Yang, Z.; Pang, Y.; Han, X.L.; Yang, Y.; Ling, J.; Jian, M.; Ren, T.L.: Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12(9), 9134–9141 (2018)

    Article  Google Scholar 

  9. Pang, Y.; Zhang, K.; Yang, Z.; Jiang, S.; Ju, Z.; Li, Y.; Liang, R.: Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12(3), 2346–2354 (2018)

    Article  Google Scholar 

  10. Reddy, P.L.; Deshmukh, K.; Kovářík, T.; Nambiraj, N.A.; Shaik, K.P.: Green chemistry mediated synthesis of cadmium sulphide/polyvinyl alcohol nanocomposites: assessment of microstructural, thermal, and dielectric properties. Polym. Compos. 41, 2054–2067 (2020)

    Article  Google Scholar 

  11. Li, T.T.; Yan, M.; Zhong, Y.; Ren, H.T.; Lou, C.W.; Huang, S.Y.; Lin, J.H.: Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol (PVA)/chitosan (CS)/graphene (Gr) nanofibrous membranes. J. Mater. Res. Technol. 8(6), 5124–5132 (2019)

    Article  Google Scholar 

  12. Akbar, F.; Kolahdouz, M.; Larimian, S.; Radfar, B.; Radamson, H.H.: Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J. Mater. Sci.: Mater. Electron. 26(7), 4347–4379 (2015)

    Google Scholar 

  13. Liu, W.; Zhou, R.; Ding, G.; Soah, J.M.; Yue, C.Y.; Lu, X.: Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites. Carbon 83, 188–197 (2015)

    Article  Google Scholar 

  14. Panahi-Kalamuei, M.; Amiri, O.; Salavati-Niasari, M.: Green hydrothermal synthesis of high quality single and few layers graphene sheets by bread waste as precursor. J. Mater. Res. Technol. 9, 2679–2690 (2020)

    Article  Google Scholar 

  15. Yu, P.; Lowe, S.E.; Simon, G.P.; Zhong, Y.L.: Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid Interface 20, 329–338 (2015)

    Article  Google Scholar 

  16. Zhong, Y.L.; Tian, Z.; Simon, G.P.; Li, D.: Scalable production of graphene via wet chemistry: progress and challenges. Mater. Today 18, 73–78 (2015)

    Article  Google Scholar 

  17. Htwe, Y.Z.N.; Chow, W.S.; Suda, Y.; Thant, A.A.; Mariatti, M.: Effect of electrolytes and sonication times on the formation of graphene using an electrochemical exfoliation process. Appl. Surf. Sci. 469, 951–961 (2019)

    Article  Google Scholar 

  18. Huang, X.; Qi, X.; Boey, F.; Zhang, H.: Rational and practical exfoliation of graphite using well-defined poly (3-hexylthiophene) for the preparation of conductive polymer/graphene composite. Sci. Rep. 7, 39937 (2017)

    Article  Google Scholar 

  19. Xia, Z.Y.; Pezzini, S.; Treossi, E.; Giambastiani, G.; Corticelli, F.; Morandi, V.; Zanelli, A.; Bellani, V.; Palermo, V.: The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv. Funct. 23, 4684–4693 (2013)

    Google Scholar 

  20. Mario, H.; Wan-Yu, C.; Tuân, D.N.; Ya-Ping, H.: Controlling the properties of graphene produced by electrochemical exfoliation. J. Nanotechnol. 26, 335607 (2015)

    Article  Google Scholar 

  21. Hong, B.J.; Compton, O.C.; An, Z.; Eryazici, I.; Nguyen, S.T.: Successful stabilization of graphene oxide in electrolyte solutions: enhancement of biofunctionalization and cellular uptake. ACS Nano 6, 63–73 (2011)

    Article  Google Scholar 

  22. Geng, Y.; Li, J.; Kim, J.K.: Synthesis and electrical conducting behavior of graphite nanoplatelet/polymer nanocomposites. In: Tjong, S.C., Mai, Y.W. (eds.) Physical Properties and Applications of Polymer Nanocomposites, pp. 315–346. Elsevier, Amsterdam (2010)

    Chapter  Google Scholar 

  23. Zhang, W.; Zou, X.; Li, H.; Hou, J.; Zhao, J.; Lan, J.; Feng, B.; Liu, S.: Size fractionation of graphene oxide sheets by the polar solvent-selective natural deposition method. RSC Adv. 5, 146–152 (2015)

    Article  Google Scholar 

  24. Xiu-Yun, C.: Graphene-like nanosheets synthesized by natural flaky graphite in Shandong, China. Int. Nano Lett. 3(1), 6 (2013)

    Article  Google Scholar 

  25. Deng, S.; Berry, V.: Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19, 197–212 (2016)

    Article  Google Scholar 

  26. Wang, Y.; Sun, H.; Zhang, R.; Yu, S.; Kong, J.: Large scale templated synthesis of single-layered graphene with a high electrical capacitance. Carbon 53, 245–251 (2013)

    Article  Google Scholar 

  27. Zhou, M.; Tang, J.; Cheng, Q.; Xu, G.; Cui, P.; Qin, L.C.: Few-layer graphene obtained by electrochemical exfoliation of graphite cathode. Chem. Phys. Lett. 572, 61–65 (2013)

    Article  Google Scholar 

  28. Sahoo, S.K.; Mallik, A.: Synthesis and characterization of conductive few layered graphene nanosheets using an anionic electrochemical intercalation and exfoliation technique. J. Mater. Chem. C 3, 10870–10878 (2015)

    Article  Google Scholar 

  29. Aldosari, M.; Othman, A.; Alsharaeh, E.: Synthesis and characterization of the in situ bulk polymerization of PMMA containing graphene sheets using microwave irradiation. Molecules 18, 3152–3167 (2013)

    Article  Google Scholar 

  30. Coroş, M.; Pogăcean, F.; Roşu, M.-C.; Socaci, C.; Borodi, G.; Mageruşan, L.; Biriş, A.R.; Pruneanu, S.: Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. RSC Adv. 6, 2651–2661 (2016)

    Article  Google Scholar 

  31. Parvez, K.; Wu, Z.-S.; Li, R.; Liu, X.; Graf, R.; Feng, X.; Müllen, K.: Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Org. Chem. 136, 6083–6091 (2014)

    Google Scholar 

  32. Shinde, D.B.; Brenker, J.; Easton, C.D.; Tabor, R.F.; Neild, A.; Majumder, M.: Shear assisted electrochemical exfoliation of graphite to graphene. Langmuir 32(14), 3552–3559 (2016)

    Article  Google Scholar 

  33. Adriano, A.; Pumera, M.: Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chem. Eur. J. 22, 153–159 (2016)

    Article  Google Scholar 

  34. Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. 97(18), 187401 (2006)

    Google Scholar 

  35. Hamra, A.A.B.; Lim, H.N.; Chee, W.K.; Huang, N.M.: Electro-exfoliating graphene from graphite for direct fabrication of supercapacitor. Appl. Surf. Sci. 360, 213–223 (2016)

    Article  Google Scholar 

  36. Abdolhosseinzadeh, S.; Asgharzadeh, H.; Kim, H.S.: Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 10160 (2015)

    Article  Google Scholar 

  37. Vorrada, L.; Totepvimarn, K.; Eimburanapravat, P.; Boonchompoo, W.; Buasri, A.: Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv. Mater. Sci. Eng. 2013 (2013)

  38. Liu, J.; Poh, C.K.; Zhan, D.; Lai, L.; Lim, S.H.; Wang, L.; Liu, X.; Gopal Sahoo, N.; Li, C.; Shen, Z.; Lin, J.: Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy 2, 377–386 (2013)

    Article  Google Scholar 

  39. Leishan, S.; Li, J.; Guang, Y.; Zhang, Y.; Zhang, H.; Che, X.; Wang, Y.: PVA/polyethyleneimine-functionalized graphene composites with optimized properties. Mater. Des. 99, 235–242 (2016)

    Article  Google Scholar 

  40. Kaiwen, C.; Ching, Y.; Chuah, C.; Julai, S.; Liou, N.: Preparation and characterization of polyvinyl alcohol–chitosan composite films reinforced with cellulose nanofiber. Materials 9, 644 (2016)

    Article  Google Scholar 

  41. Qibo, B.; Tian, H.; Wang, Y.; Liu, Q.; Ge, X.; Rajulu, A.V.; Xiang, A.: Effect of graphene oxide on the structure and properties of poly (vinyl alcohol) composite films. Polym. Sci. Ser. A 57, 836–844 (2015)

    Article  Google Scholar 

  42. Iosif, T.; Tian, H.; Tasis, D.: Functionalized graphene–poly (vinyl alcohol) nanocomposites: physical and dielectric properties. Express Polym. Lett. 6, 4 (2012)

    Google Scholar 

  43. Alam, A.; Moussa, M.: Preparation of graphene/poly (vinyl alcohol) composite hydrogel films with enhanced electrical and mechanical properties. Polym. Compos. 41, 809–816 (2019)

    Article  Google Scholar 

  44. Lee, H.; Seong, B.; Moon, H.; Byun, D.: Directly printed stretchable strain sensor based on ring and diamond shaped silver nanowire electrodes. RSC Adv. 5(36), 28379–28384 (2015)

    Article  Google Scholar 

  45. Lee, C.J.; Park, K.H.; Han, C.J.; Oh, M.S.; You, B.; Kim, Y.S.; Kim, J.W.: Crack-induced Ag nanowire networks for transparent, stretchable, and highly sensitive strain sensors. Sci. Rep. 7(1), 7959 (2017)

    Article  Google Scholar 

  46. Moriche, R.; Sánchez, M.; Jiménez-Suárez, A.; Prolongo, S.G.; Urena, A.: Strain monitoring mechanisms of sensors based on the addition of graphene nanoplatelets into an epoxy matrix. Compos. Sci. Technol. 123, 65–70 (2016)

    Article  Google Scholar 

  47. Liu, Y.; Zhang, D.; Wang, K.; Liu, Y.; Shang, Y.: A novel strain sensor based on graphene composite films with layered structure. Compos. Part A Appl. Sci. Manuf. 80, 95–103 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to the Malaysian Ministry of Education for awarding us a Fundamental Research Grant (MRSA with Grant No. 6071284) and Universiti Sains Malaysia for the USM fellowship scheme granted to the first author. They would also like to thank Universiti Sains Malaysia (USM) and School of Materials and Mineral Resources Engineering for the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mariatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Htwe, Y.Z.N., Mariatti, M. & Chin, S.Y. Fabrication of Graphene by Electrochemical Intercalation Method and Performance of Graphene/PVA Composites as Stretchable Strain Sensor. Arab J Sci Eng 45, 7677–7689 (2020). https://doi.org/10.1007/s13369-020-04807-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04807-w

Keywords

Navigation