Skip to main content
Log in

Global Nonlinear Dynamics of MEMS Arches Actuated by Fringing-Field Electrostatic Field

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Electrostatically actuated microbeams are a basic structural components mainly used in MEMS and possessing a wide range of applications such as sensors, actuators, resonators, filters, etc.... The pull-in instability and the smaller stroke length, are some of the major challenges in conventional parallel-plates-based electrostatics MEMS actuators, which somehow limit their respective application. Hence, a smart technique relying on the so-called electrical fringing field actuation offers a possibility of overcoming the above limitations and resulting in structural enhancement of MEMS devices. Along this line, the nonlinear dynamic behavior of a resonant MEMS arch microbeam actuated by fringing electric field with the ground electrodes placed at either side of it is presented in this work. The nonlinear equation of motion of the beam is solved using finite difference method to get the dynamic frequency responses of the microbeam. Linear resonant peaks are observed for the cases of low AC dynamic loading and high damping when the actuation frequency coincides with the devices’ various natural frequencies. The peaks of the resonance begin to shift away from the natural frequencies of the device demonstrating nonlinear phenomenon of softening and hardening with the increase in dynamic AC loading and decrease in the damping. Superharmonic frequencies at one-half or one-third of the natural frequencies and subharmonic frequencies at twice or thrice the natural frequencies are also triggered for various cases of nonlinear frequency response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Krylov, S.; Seretensky, S.; Schreiber, D.: Proceedings of the the 21st IEEE International Conference on Micro Electro Mechanical Systems (Tuscan, AZ, USA, January 2008). Springer, Berlin (2008)

  2. Yin, Z.; Yisong, W.; Zhihong, L.; Yubo, H.; Dachao, L.: Snap-through and pull-in instabilities of an arch-shaped beam under an electrostatic loading. J. Microelectromech. Syst. 16, 684–693 (2007)

    Article  Google Scholar 

  3. Krylov, S.; Ilic, B.R.; Schreiber, D.; Seretensky, S.; Craighead, H.: The pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18, 055026 (2008)

    Article  Google Scholar 

  4. Krylov, S.; Ilic, B.; Lulinsky, S.: Bistability of curved microbeams actuated by fringing electrostatic fields. Nonlinear Dyn. 66(3), 403–426 (2011)

    Article  MathSciNet  Google Scholar 

  5. Lee, K.B.: Non-contact electrostatic microactuator using slit structures: theory and a preliminary test. J. Micromech. Microeng. 17, 2186–2196 (2007)

    Article  Google Scholar 

  6. Linzon, Y.; Ilic, B.; Lulinsky, S.; Krylov, S.: L: Efficient parametric excitation of silicon-on-insulator microcantilever beams by fringing electrostatic fields. J. Appl. Phys. 113, 163508–163511 (2013)

    Article  Google Scholar 

  7. Ouakad, H.M.: Static response and natural frequencies of microbeams actuated by out-of-plane electrostatic fringing-fields. Int. J. Non-Linear Mech. 63, 39–48 (2014)

    Article  Google Scholar 

  8. Tausiff, M.; Ouakad, H.: Static, eigenvalue problem and bifurcation analysis of mems arches actuated by electrostatic fringing-fields. Microsyst. Technol. 22, 193–206 (2016)

    Article  Google Scholar 

  9. Kambali, P.N.; Pandey, A.K.: Nonlinear response of a microbeam under combined direct and fringing field excitation. ASME J. Comput. Nonlinear Dyn. 10, 10–16 (2015)

    Google Scholar 

  10. Younis, M.; Abdel-Rahman, E.; Nayfeh, A.H.: A reduced-order model for electrically actuated microbeam-based mems. J. Microelectromech. Syst. 12, 672–680 (2003)

    Article  Google Scholar 

  11. Ouakad, H.M.; Younis, M.I.: The dynamic behavior of mems arch resonators actuated electrically. Int. J. Non-Linear Mech. 45, 704–713 (2010)

    Article  Google Scholar 

  12. Liu, S.; Davidson, A.; Lin, Q.: Simulation studies on nonlinear dynamics and chaos in a mems cantilever control system. J. Micromech. Microeng. 14, 1064–73 (2004)

    Article  Google Scholar 

  13. Zhang, W.; Tabata, O.; Tsuchiya, T.; Meng, G.: Noise-induced chaos in the electrostatically actuated mems resonators. Phys. Lett. A 375, 2903–2910 (2011)

    Article  Google Scholar 

  14. Lenci, S.; Rega, G.: Control of pull-in dynamics in a nonlinear thermoelasticelectrically actuated microbeam. J. Micromech. Microeng 16, 390–401 (2006)

    Article  Google Scholar 

  15. Siewe, M.S.; Hegazy, U.H.: Homoclinic bifurcation and chaos control in mems resonators. Appl. Math. Model. 35, 5533–5552 (2011)

    Article  MathSciNet  Google Scholar 

  16. Haghighi, H.S.; Markazi, A.H.: Chaos prediction and control in mems resonators. Commun. Nonlinear Sci. Numer. Simul. 15, 3091–3099 (2010)

    Article  Google Scholar 

  17. Aghababa, M.P.: Chaos in a fractional-order micro–electro-mechanical resonator and its suppression. Chin. Phys. B 21, 100505 (2012)

    Article  Google Scholar 

  18. Fargas-Marques, A.; Casals-Terre, J.; Shkel, A.: Resonant pull-in condition in parallel-plate electrostatic actuators. J. Microelectromech. Syst. 16, 1044–53 (2007)

    Article  Google Scholar 

  19. Ashhab, M.; Salapaka, M.V.; Dahleh, M.; Mezic, I.: Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy. J. Nonlinear Dyn. 20, 197–220 (1999)

    Article  MathSciNet  Google Scholar 

  20. Basso, M.; Giarre, L.; Dahleh, M.; Mezic, I.: Complex dynamics in a harmonically excited Lennard–Jones oscillator: microcantilever-sample interaction in scanning probe microscopes’. J. Dyn. Syst. Meas. Control 122, 240–245 (2000)

    Article  Google Scholar 

  21. Alsaleem, F.M.; Younis, M.I.; Ouakad, H.M.: On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. J. Micromech. Microeng. 19, 14 (2009)

    Article  Google Scholar 

  22. Nayfeh, A.; Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)

    Book  Google Scholar 

  23. Nayfeh, A.H.; Younis, M.I.; Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in mems resonators. J. Nonlinear Dyn. 48, 153–63 (2007)

    Article  Google Scholar 

  24. Nayfeh, A.H.; Younis, M.I.: Dynamics of mems resonators under superharmonic and subharmonic excitations. J. Micromech Microeng. 15, 1840–7 (2005)

    Article  Google Scholar 

  25. Alsaleem, F.M.; Younis, M.I.; Ruzziconi, L.: An experimental and theoretical investigation of dynamic pull-in in mems resonators actuated electrostatically. J. Microelectromech. Syst. 19, 794–806 (2010)

    Article  Google Scholar 

  26. Zur, K.; Arefi, M.; Kim, J.; Reddy, J.: Free vibration and buckling analyses of magneto–electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Compos. Part B 182, 107601 (2020)

    Article  Google Scholar 

  27. Demir, C.; Civalek, O.: On the analysis of microbeams. Int. J. Eng. Sci. 121, 14–33 (2017)

    Article  MathSciNet  Google Scholar 

  28. Barretta, R.: A higher-order eringen model for Bernoulli–Euler nanobeams. Arch. Appl. Mech. 86, 483–495 (2016)

    Article  Google Scholar 

  29. Xu, L.; Yang, Q.: Multi-field coupled dynamics for a micro beam. Mech. Based Design Struct. Mach. 43, 57–73 (2015)

    Article  Google Scholar 

  30. Nayfeh, A.H.: Nonlinear Interactions. Wiley, New York (2000)

    MATH  Google Scholar 

  31. Younis, M.I.; Ouakad, H.M.; Alsaleem, F.M.; Miles, R.; Cui, W.: Nonlinear dynamics of mems arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19, 647–656 (2010)

    Article  Google Scholar 

  32. Nayfeh, A.H.; Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)

    Book  Google Scholar 

  33. Younis, M.I.; Nayfeh, E.M.A.-R.A.H.: Reduced-order model for electrically actuated microbeam-based mems. J. Microelectromech. Syst. 12, 5 (2003)

    Article  Google Scholar 

  34. Younis, M.I.; Abdel-Rahman, E.M.; Nayfeh, A.H.: Global dynamics of mems resonators under superharmonic excitation. In: Proceedings. 2004 International Conference on MEMS NANO and Smart Systems, ICMENS 2004, pp. 694–699 (2004)

  35. Bellman, R.E.; Kashef, B.G.; Casti, J.: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10, 40–52 (1972)

    Article  MathSciNet  Google Scholar 

  36. Civan, F.; Sliepcevich, C.M.: Differential quadrature for multidimensional problems. J Math. Anal. 101, 423–443 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of King Fahd University of Petroleum and Minerals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassen M. Ouakad.

Ethics declarations

Conflict of interest

The authors also declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tausiff, M., Ouakad, H.M. & Alqahtani, H. Global Nonlinear Dynamics of MEMS Arches Actuated by Fringing-Field Electrostatic Field. Arab J Sci Eng 45, 5959–5975 (2020). https://doi.org/10.1007/s13369-020-04588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04588-2

Keywords

Navigation