Skip to main content

Advertisement

Log in

Properties of Drillstring Vibration Absorber for Rotary Drilling Rig

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

During drilling into hard rocks, the vibration of telescopic drillstring for the rotary drilling rig becomes more severe, which not only leads to the fracture of drillstring, but also reduces the rock-breaking efficiency, the service life, and the reliability of the rotary drilling rig. A drillstring vibration absorber for the rotary drill rig was proposed based on nonlinear targeted energy transfer technology, and the theoretical model of the absorber was adopted. By applying the instantaneous nonlinear energy absorption rate of the absorber, the vibration responses of the system were predicted on different structure parameters and impact amplitudes. To evaluate the feasibility of the absorber, experiments were carried out. Moreover, the amplitude decrease rate was generated for various working conditions. Furthermore, the analytical results were verified by the experiment. The results indicate that the absorber has a distinct effect on vibration reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Li, Z.Y.; Jiao, S.J.; Wu, F.X.: Rotary Drilling Rig and Construction Technology. Beijing, China (2010)

    Google Scholar 

  2. Thomas Busuyi AFENI: Optimization of drilling and blasting operations in an open pit mine_the SOMAIR experience. Min. Sci. Technol. 19(6), 736–739 (2009)

    Google Scholar 

  3. Sapsis, T.P.; Vakakis, A.F.; Gendelman, O.V.; Bergman, L.A.; Kerschen, G.; Quinn, D.D.: Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance captures: part II, analytical study. J. Sound Vib. 325(1–2), 297–320 (2009)

    Article  Google Scholar 

  4. Zhang, Z.; Lu, Z.Q.; Ding, H.; Chen, L.Q.: An inertial nonlinear energy sink. J. Sound Vib. 450, 199–213 (2019)

    Article  Google Scholar 

  5. Gendelman, O.V.; Starosvetsky, Y.; Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes. Nonlinear Dyn. 51, 31–46 (2008)

    Article  Google Scholar 

  6. Avramov, K.V.; Mikhlin, Y.V.: Review of applications of nonlinear normal modes for vibrating mechanical systems. Appl. Mech. Rev. 65(2), 1010–1029 (2013)

    Article  Google Scholar 

  7. Javidialesaadi, A.; Wierschem, N.E.: An inerter-enhanced nonlinear energy sink. Mech. Syst. Signal Process.129, 449–454 (2019)

    Article  Google Scholar 

  8. Hubbard, S.A.; McFarland, D.M.; Bergman, L.A.; Vakakis, A.F.; Andersen, G.: Targeted energy transfer between a swept wing and winglet-housed nonlinear energy sink. AIAA J. 52(12), 2633–2651 (2014)

    Article  Google Scholar 

  9. Lin, D.C.; Oguamanam, D.C.D.: Targeted energy transfer efficiency in a low-dimensional mechanical system with an essentially nonlinear attachment. Nonlinear Dyn. 82, 971–986 (2015)

    Article  MathSciNet  Google Scholar 

  10. AL-Shudeifat, M.A.; Vakakis, A.F.; Bergman, L.A.: Shock mitigation by means of low- to high-frequency nonlinear targeted energy transfers in a large-scale structure. J. Comput. Nonlinear Dyn. 11(2), 1015–1025 (2016)

    Google Scholar 

  11. Zhang, W.F.; Liu, Y.; Cao, S.L.; Chen, J.H.; Zhang, Z.X.; Zhang, J.Z.: Targeted energy transfer between 2-D wing and nonlinear energy sinks and their dynamic behaviors. Nonlinear Dyn.90(3), 1841–1850 (2017)

    Article  Google Scholar 

  12. Dolatabadi, N.; Theodossiades, S.; Rothberg, S.J.: Passive control of piston secondary motion using nonlinear energy absorbers. J. Vib. Acoust. 139(5), 1462–1473 (2017)

    Article  Google Scholar 

  13. Georgiades, F.; Vakakis, A.F.: Dynamics of a linear beam with an attached local nonlinear energy sink. Commun. Nonlinear Sci. 12(5), 643–651 (2007)

    Article  Google Scholar 

  14. Huang, X.C.; Su, Z.W.; Hua, H.X.: Optimal parameters for dynamic vibration absorber with negative stiffness in controlling force transmission to a rigid foundation. Int. J. Mech. Sci. 152, 88–98 (2019)

    Article  Google Scholar 

  15. Qiu, D.H.; Seguy, S.; Paredes, M.: Tuned nonlinear energy sink with conical spring: design theory and sensitivity analysis. J. Mech. Des. 140(1), 1500–1509 (2018)

    Google Scholar 

  16. Taleshi, M.; Dardel, M.; Pashaie, M.H.: Passive targeted energy transfer in the steady state dynamics of a nonlinear plate with nonlinear absorber. Chaos Soliton. Fract. 92, 56–72 (2016)

    Article  MathSciNet  Google Scholar 

  17. Yao, H.L.; Cao, Y.B.; Ding, Z.Y.; Wen, B.C.: Using grounded nonlinear energy sinks to suppress lateral vibration in rotor systems. Mech. Syst. Signal Process. 124, 237–253 (2019)

    Article  Google Scholar 

  18. Wei, Y.M.; Dong, X.J.; Guo, P.F.; Feng, Z.K.; Zhang, W.M.: Enhanced targeted energy transfer by vibro impact cubic nonlinear energy sink. Int. J. Appl. Mech. (2018). https://doi.org/10.1142/S1758825118500618

    Article  Google Scholar 

  19. Gendelman, O.V.; Gourdon, E.; Lamarque, C.H.: Quasiperiodic energy pumping in coupled oscillators under periodic forcing. J. Sound Vib. 294(4–5), 651–662 (2006)

    Article  Google Scholar 

  20. Starosvetsky, Y.; Gendelman, O.V.: Response regimes in forced system with nonlinear energy sink: quasi-periodic and random forcing. Nonlinear Dyn. 64(1–2), 177–195 (2011)

    Article  Google Scholar 

  21. Lo Feudo, S.; Touze, C.; Boisson, J.; Cumunel, G.: Nonlinear magnetic vibration absorber for passive control of a multi-storey structure. J. Sound Vib. 438, 33–53 (2019)

    Article  Google Scholar 

  22. Zang, J.; Zhang, Y.W.; Ding, H.; Yang, T.Z.; Chen, L.Q.: The evaluation of a nonlinear energy sink absorber based on the transmissibility. Mech. Syst. Signal Process. 125, 99–122 (2019)

    Article  Google Scholar 

  23. Qiu, D.; Seguy, S.; Paredes, M.: Design criteria for optimally tuned vibro-impact nonlinear energy sink. J. Sound Vib. 442, 497–513 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the financial support from National Natural Science Foundation of China (Nos. 51805041, 51774320) and The National Key Research and Development Program of China (No. 2018YFC0808204) and Fundamental Research Funds for the Central Universities (Nos. 300102259204, 310825152011) and the Scientific Planning Project of Henan Provincial Department of Transportation (Nos. 2018J1, 2019J3) and the Key Technological Special Project of Xinxiang city (No. ZD19007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Gu, H., Kan, Z. et al. Properties of Drillstring Vibration Absorber for Rotary Drilling Rig. Arab J Sci Eng 45, 5849–5858 (2020). https://doi.org/10.1007/s13369-020-04562-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04562-y

Keywords

Navigation