Skip to main content

Advertisement

Log in

Synthesis of g-C3N4/BiVO4 and Its Photocatalytic Performance for Hydrogen Production

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, ultrasonic hybridization was used to improve the photocatalytic efficiency and stability of the g-C3N4/BiVO4 photocatalyst, which was synthesized using Bi(NO3)3·5H2O and NaVO3 via the hydrothermal method to obtain BiVO4, and further modified by g-C3N4. Moreover, the obtained photocatalyst was studied using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller, ultraviolet–visible spectroscopy and electrochemical impedance spectroscopy. Subsequently, the photocatalytic performance for hydrogen production of the obtained photocatalyst was determined in a photocatalytic reactor under visible light, with methanol as the sacrificial agent and chloroplatinic acid as the promoter. The experimental results showed that the photocatalytic activity of BiVO4 considerably improved under visible light condition when its surface was modified with g-C3N4. When the amount of g-C3N4 was 5% of the amount of BiVO4, the hydrogen production rate was 53.25 μmol/h, which was 77.17 times higher than that of pure BiVO4. This improved performance can be attributed to the larger specific surface area, the better electron transfer efficiency and the electron–hole pair separation efficiency of g-C3N4/BiVO4. A possible mechanism model for the formation of g-C3N4/BiVO4 composite photocatalyst has also been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aricò, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; Schalkwijk, W.V.: Nanostructured materials for advanced energy conversion and storage devices. J. Nat. Mater. 4(5), 366–377 (2005)

    Article  Google Scholar 

  2. Kudo, A.; Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. J. Chem. Soc. Rev. 38(1), 253–278 (2009)

    Article  Google Scholar 

  3. Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. J. Nat. Mater. 8(1), 76–80 (2009)

    Article  Google Scholar 

  4. Chen, X.B.; Shen, S.H.; Guo, L.J.; Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. J. Chem. Rev. 110(11), 6503–6570 (2010)

    Article  Google Scholar 

  5. Fujishima, A.; Zhang, X.T.; Tryk, D.A.: TiO2 photocatalysis and related surface phenomena. J. Surf. Sci. Rep. 63(12), 515–582 (2008)

    Article  Google Scholar 

  6. Ni, M.; Leung, M.K.H.; Leung, D.Y.C.; Sumathy, K.: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. J. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007)

    Article  Google Scholar 

  7. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. J. Sci. 293(5528), 269–271 (2001)

    Google Scholar 

  8. Bach, U.; Lupo, D.; Comte, P.; Moser, J.E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. J. Nat. 395(6702), 583–585 (1998)

    Article  Google Scholar 

  9. Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. J. Nat. 453(7195), 638–641 (2008)

    Article  Google Scholar 

  10. Kim, T.W.; Choi, K.S.: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. J. Sci. 343(6174), 990–994 (2014)

    Google Scholar 

  11. Ng, Y.H.; Iwase, A.; Kudo, A.; Amal, R.: Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem. 1(17), 2607–2612 (2010)

    Google Scholar 

  12. Yu, J.; Kudo, A.: Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. J. Adv. Funct. Mater. 16(16), 2163–2169 (2006)

    Article  Google Scholar 

  13. Zhou, L.; Wang, W.Z.; Liu, S.W.; Zhang, L.S.; Xu, H.L.; Zhu, W.: A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J. Mol. Catal. A: Chem. 252(1–2), 120–124 (2006)

    Article  Google Scholar 

  14. Yan, S.C.; Li, Z.S.; Zou, Z.G.: Photodegradation performance of g-C3N4 fabricated by directly heating melamine. J. Langmuir. 25(17), 10397–10401 (2009)

    Article  Google Scholar 

  15. Xiang, Q.J.; Yu, J.G.; Jaroniec, M.: Preparation and enhanced visible-light photocatalytic H-2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 115(19), 7355–7363 (2011)

    Article  Google Scholar 

  16. Cao, S.W.; Low, J.X.; Yu, J.G.; Jaroniec, M.: Polymeric photocatalysts based on graphitic carbon nitride. J. Adv. Mater. 27(13), 2150–2176 (2015)

    Article  Google Scholar 

  17. Cheng, J.; Yan, X.L.; Mo, Q.H.; Liu, B.T.; Wang, J.; Yang, X.; Li, L.: Facile synthesis of g-C3N4/BiVO4 heterojunctions with enhanced visible light photocatalytic performance. J. Ceram Int. 43(1), 301–307 (2017)

    Article  Google Scholar 

  18. Jiang, D.L.; Xiao, P.; Shao, L.Q.; Li, D.; Chen, M.: RGO-promoted all-solid-state g-C3N4/BiVO4 Z-scheme heterostructure with enhanced photocatalytic activity toward the degradation of antibiotics. J. Ind Eng Chem Res. 56(31), 8823–8832 (2017)

    Article  Google Scholar 

  19. Wang, Y.; Sun, J.Y.; Li, J.; Zhao, X.: Electrospinning preparation of nanostructured g-C3N4/BiVO4 composite films with an enhanced photoelectrochemical performance. J. Langmuir. 33(19), 4694–4701 (2017)

    Article  Google Scholar 

  20. Zhang, L.; Chen, D.; Jiao, X.L.: Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B. 110(6), 2668–2673 (2006)

    Article  Google Scholar 

  21. Liang, Y.Q.; Tsubota, T.; Mooij, L.P.A.; Krol, R.V.D.: Highly improved quantum efficiencies for thin film BiVO4 photoanodes. J. Phys. Chem. C 115(35), 17594–17598 (2011)

    Article  Google Scholar 

  22. Bai, X.J.; Wang, L.; Zong, R.L.; Zhu, Y.F.: Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C 117(19), 9952–9961 (2013)

    Article  Google Scholar 

  23. Zhu, B.C.; Xia, P.F.; Ho, W.K.; Yu, J.G.: Isoelectric point and adsorption activity of porous g-C3N4. J. Appl. Surf. Sci. 344, 188–195 (2015)

    Article  Google Scholar 

  24. Kong, H.J.; Won, D.H.; Kim, J.; Woo, S.I.: Sulfur-doped g-C3N4/BiVO4 composite photocatalyst for water oxidation under visible light. J. Chem. Mater. 28(5), 1318–1324 (2016)

    Article  Google Scholar 

  25. Ji, Y.X.; Cao, J.F.; Jiang, L.Q.; Zhang, Y.H.; Yi, Z.G.: G-C3N4/BiVO4 composites with enhanced and stable visible light photocatalytic activity. J. Alloys Compd. 590(25), 9–14 (2014)

    Article  Google Scholar 

  26. Zhang, J.H.; Ren, F.Z.; Deng, M.S.; Wang, Y.X.: Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: a first-principles study. J. PCCP. 17(15), 10218–10226 (2015)

    Article  Google Scholar 

  27. Zhan, S.; Zhou, F.; Huang, N.B.; He, Q.C.; Zhu, Y.F.: Deactivating harmful marine microorganisms through photoelectrocatalysis by GO/ZnWO4 electrodes. J. Chem. Eng. J. 330(15), 635–643 (2017)

    Article  Google Scholar 

  28. Xiang, Q.J.; Yu, J.G.; Jaroniec, M.: Graphene-based semiconductor photocatalysts. J. Chem. Soc. Rev. 41(2), 782–796 (2012)

    Article  Google Scholar 

  29. Liu, J.; Liu, Y.; Liu, N.Y.; Han, Y.Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.T.; Zhong, J.; Kang, Z.H.: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. J. Sci. 347(6225), 970–974 (2015)

    Google Scholar 

  30. Hisatomi, T.; Kubota, J.; Domen, K.: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. J. Chem. Soc. Rev. 43(22), 7520–7535 (2014)

    Article  Google Scholar 

  31. Yeh, T.F.; Syu, J.M.; Cheng, C.; Chang, T.H.; Teng, H.: Graphite oxide as a photocatalyst for hydrogen production from water. J. Adv. Funct. Mater. 20(14), 2255–2262 (2010)

    Article  Google Scholar 

  32. Turner, J.A.: Sustainable hydrogen production. J. Sci. 305(5686), 972–974 (2004)

    Google Scholar 

  33. Kim, M.W.; Samuel, E.; Kim, K.; Yoon, H.; Joshi, B.; Swihart, M.T.; Yoon, S.S.: Tuning the morphology of electrosprayed BiVO4 from nanopillars to nanoferns via pH control for solar water splitting. J. Alloys Compd. 769, 193–200 (2018)

    Article  Google Scholar 

  34. Cui, P.P.; Hu, Y.; Zheng, M.M.; Wei, C.H.: Enhancement of visible-light photocatalytic activities of BiVO4 coupled with g-C3N4 prepared using different precursors. J. Environ. Sci. Pollut. Res. 25, 32466–32477 (2018)

    Article  Google Scholar 

  35. Wang, Y.; Tan, G.Q.; Liu, T.; Su, Y.N.; Ren, H.J.; Zhang, X.L.; Xia, A.; Lv, L.; Liu, Y.: Photocatalytic properties of the g-C3N4/{010} facets BiVO4 interface Z-Scheme photocatalysts induced by BiVO4 surface heterojunction. J. Appl. Catal. B. 234, 37–49 (2018)

    Article  Google Scholar 

  36. Safaei, J.; Ullah, H.; Mohamed, N.A.; Noh, M.F.M.; Soh, M.F.; Tahir, A.A.; Ludin, N.A.; Ibrahim, M.A.; Isahak, W.N.R.W.; Teridi, M.A.M.: Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. J. Appl. Catal. B. 234, 296–310 (2018)

    Article  Google Scholar 

  37. Lamers, M.; Fiechter, S.; Friedrich, D.; Abdi, F.F.; Krol, R.; Mater, J.: Formation and suppression of defects during heat treatment of BiVO4 photoanodes for solar water splitting. J. Chem. 6(38), 18694–18700 (2018)

    Google Scholar 

  38. Walsh, A.; Yan, Y.F.; Huda, M.N.; Jassim, M.M.; Wei, S.H.: Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals. J. Chem. Mater. 21(3), 547–551 (2009)

    Article  Google Scholar 

  39. Zhang, B.; Zhao, S.Y.; Wang, H.H.; Zhao, T.J.; Liu, Y.X.; Lv, L.B.; Wei, X.; Li, X.H.; Chen, J.S.: The solution-phase process of a g-C3N4/BiVO4 dyad to a large-area photoanode: interfacial synergy for highly efficient water oxidation. J. Chem. Commun. 53(76), 10544–10547 (2017)

    Article  Google Scholar 

  40. Yan, H.; Min, F.; Tao, H.: Synthesis of g-C3N4/BiVO4 nanocomposite photocatalyst and its application in photocatalytic reduction of CO2. J. Acta Phys.-Chim. Sin. 31(6), 1145–1152 (2015)

    Article  Google Scholar 

  41. Li, C.J.; Wang, S.P.; Wang, T.; Wei, Y.J.; Zhang, P.; Gong, J.L.: Monoclinic porous BiVO4 networks decorated by discrete g-C3N4 nano-Islands with tunable coverage for highly efficient photocatalysis. J. Small. 10(14), 2783–2790 (2014)

    Article  Google Scholar 

  42. Ou, M.; Zhong, Q.; Zhang, S.L.; Yu, L.M.: Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase. J. Alloys Compd. 626, 401–409 (2015)

    Article  Google Scholar 

  43. Olmo, L.D.; Dommett, M.; Oevreeide, I.H.; Walsh, A.; Otero, R.C.: Water oxidation catalysed by quantum- sized BiVO4+. J. Mater. Chem. A. 6(48), 24965–24970 (2018)

    Article  Google Scholar 

  44. Song, C.L.; Jin, Z.B.; Li, F.Y.; Zhen, M.M.; Xia, L.; Xu, L.: Enhanced photocatalytic performance of bismuth vanadate assisted by polyoxometalates and phthalocyanine. J. New J. Chem. 42(24), 19678–19684 (2018)

    Article  Google Scholar 

  45. Xia, T.; Chen, M.; Xiao, L.S.; Fan, W.Q.; Mao, B.D.; Xu, D.B.; Guan, P.; Zhu, J.J.; Shi, W.D.; Chin, J.: Dip-coating synthesis of P-doped BiVO4 photoanodes with enhanced photoelectrochemical performance. J. Inst. Chem. Eng. 93, 582–589 (2018)

    Google Scholar 

  46. Li, G.Q.; Kou, S.W.; Zhang, F.; Zhang, W.F.; Guo, H.Z.: Target stoichiometry and growth temperature impact on properties of BiVO4 (010) epitaxial thin films. J. Cryst. Eng. Comm. 20(43), 6950–6956 (2018)

    Article  Google Scholar 

  47. Yu, J.G.; Li, C.; Liu, S.W.: Effect of PSS on morphology and optical properties of ZnO. J. Colloid Interface Sci. 326(2), 433–438 (2008)

    Article  Google Scholar 

  48. Packiaraj, R.; Devendran, P.; Bahadur, S.A.; Nallamuthu, N.: Structural and electrochemical studies of Scheelite type BiVO4 nanoparticles: synthesis by simple hydrothermal method. J. Mater. Sci.: Mater. Electron. 29(15), 13265–13276 (2018)

    Google Scholar 

  49. Hernández, S.; Gerardi, G.; Fina, K.A.; Russo, N.: Evaluation of the charge transfer kinetics of spin-coated BiVO4 thin films for sun-driven water photoelectrolysis. J. Appl. Catal. B. 190, 66–74 (2016)

    Article  Google Scholar 

  50. Fajrina, N.; Tahir, M.: 2D-montmorillonite-dispersed g-C3N4/TiO2 2D/0D nanocomposite for enhanced photo-induced H2 evolution from glycerol-water mixture. J. Appl. Surf. Sci. 471, 1053–1064 (2019)

    Article  Google Scholar 

  51. Thimsen, E.; Le Formal, F.; Gratzel, M.; Warren, S.C.: Influence of plsmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. J. Nano Lett. 11(1), 35–43 (2011)

    Article  Google Scholar 

  52. Abdi, F.F.; Dabirian, A.; Dam, B.; van de Krol, R.: Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO4 photoanodes decorated with Ag@SiO2 core-shell nanoparticles. J. Phys. Chem. 16(29), 15272–15277 (2014)

    Google Scholar 

  53. Kowalska, E.; Mahaney, O.O.; Ohtani, A.R.: Visible light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. J. Phys. Chem. 114(5), 2344–2355 (2010)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (Nos. 51879018, 51771042 and 21676040) and the Fundamental Research Funds for the Central Universities (Nos. 3132016065 and 313016341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhou, F. Synthesis of g-C3N4/BiVO4 and Its Photocatalytic Performance for Hydrogen Production. Arab J Sci Eng 45, 4659–4667 (2020). https://doi.org/10.1007/s13369-020-04399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04399-5

Keywords

Navigation