Skip to main content

Advertisement

Log in

Machine Learning for Pavement Performance Modelling in Warm Climate Regions

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Accurate pavement performance modelling is an essential requirement for cost-effective pavement design and enhances pavement management decision making. Due to the complexity of the pavement structure and pavement response, dominant failure mechanisms may vary depending on the climate region: cold or warm. This study investigated the significance of pavement design factors on pavement performance in warm regions and compared them to set of factors previously identified for cold regions. An artificial neural network (ANN) supported by a forward sequential feature selection algorithm was employed to identify the most significant design factors prevailing in warm climate regions using data extracted from the Long-Term Pavement Performance database. In addition, five machine learning techniques were utilized to model the pavement performance in warm regions, namely: regression tree, support vector machine, ensembles, Gaussian process regression, and ANN. Moreover, conventional regression modelling was used for comparison assessment. The analysis revealed seven design factors that are significantly impacting asphalt pavement performance in warm regions: initial roughness, relative humidity, average wind velocity, average albedo, average emissivity, traffic volume, and pavement structural capacity. The results indicate that pavement performance in warm climate regions is dominated by different environmental factors than those found for cold climate regions. The ANN modelling technique produced the most accurate asphalt pavement performance models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zeiada, W.A.; Underwood, B.S.; Pourshams, T.; Stempihar, J.; Kaloush, K.E.: Comparison of conventional, polymer, and rubber asphalt mixtures using viscoelastic continuum damage model. Road Mater. Pavement Des. 15, 588–605 (2014). https://doi.org/10.1080/14680629.2014.914965

    Article  Google Scholar 

  2. Kaloush, K.E.; Biligiri, K.P.; Zeiada, W.A.; Rodezno, M.C.; Reed, J.X.: Evaluation of fiber-reinforced asphalt mixtures using advanced material characterization tests. J. Test. Eval. 38, 102442 (2010). https://doi.org/10.1520/JTE102442

    Article  Google Scholar 

  3. Hao, P.; Hachiya, Y.: Study on some factors influencing the performance of asphalt concretes for airport pavements. J. Pavement Eng. 8, 243–249 (2003)

    Article  Google Scholar 

  4. Adlinge, S.S.; Gupta, P.A.K.: Pavement deterioration and its causes. Int. J. Innov. Res. Dev. 2, 437–450 (2013)

    Google Scholar 

  5. Haider, S.W.; Chatti, K.: Effect of design and site factors on fatigue cracking of new flexible pavements in the LTPP SPS-1 experiment. Int. J. Pavement Eng. 10, 133–147 (2009). https://doi.org/10.1080/10298430802169390

    Article  Google Scholar 

  6. Tighe, S.: Evaluation of subgrade and climatic zone influences on pavement performance in the Canadian strategic highway program’s (C-SHRP) long-term pavement performance (LTPP) study. Can. Geotech. J. 39, 377–387 (2002). https://doi.org/10.1139/t01-111

    Article  Google Scholar 

  7. Hong, H.P.; Wang, S.S.: Stochastic modeling of pavement performance. Int. J. Pavement Eng. 4, 235–243 (2003). https://doi.org/10.1080/10298430410001672246

    Article  Google Scholar 

  8. Zeiada, W.; Hamad, K.; Omar, M.; Underwood, B.S.; Khalil, M.A.; Karzad, A.S.: Investigation and modelling of asphalt pavement performance in cold regions. Int. J. Pavement Eng. (2017). https://doi.org/10.1080/10298436.2017.1373391

    Article  Google Scholar 

  9. Alaswadko, N.; Hassan, R.A.; Evans, R.: Effect of traffic and environmental factors on roughness progression rate of sealed low volume arterials. In: 9th International Conference on Managing Pavement Assets (2015)

  10. Chakravarthi, V.K.: Performance evaluation of flexible pavements: a case study. Int. J. Eng. Res. 4, 569–572 (2015)

    Article  Google Scholar 

  11. Visintine, B.A.; Hicks, R.G.; Cheng, D.; Elkins, G.E.: Factors affecting the performance of pavement preservation treatments. In: 9th International Conference on Managing Pavement Assets (2015)

  12. Cho, S.-H.; Karshenas, A.; Tayebali, A.A.; Guddati, M.N.; Kim, Y.R.: A mechanistic approach to evaluate the potential of the debonding distress in asphalt pavements. Int. J. Pavement Eng. 18, 1098–1110 (2017)

    Article  Google Scholar 

  13. Chen, F.; Zhu, H.; Yu, B.; Wang, H.: Environmental burdens of regular and long-term pavement designs: a life cycle view. Int. J. Pavement Eng. 17, 300–313 (2016)

    Article  Google Scholar 

  14. Meyer, M.; Amekudzi, A.; O’Har, J.: Transportation asset management systems and climate change: adaptive systems management approach. Transp. Res. Rec. J. Transp. Res. Board. 2160, 12–20 (2010)

    Article  Google Scholar 

  15. Meyer, M.D.; Weigel, B.: Climate change and transportation engineering: preparing for a sustainable future. J. Transp. Eng. 137, 393–403 (2011). https://doi.org/10.1061/(ASCE)TE

    Article  Google Scholar 

  16. Qiao, Y.; Flintsch, G.; Dawson, A.; Parry, T.: Examining effects of climatic factors on flexible pavement performance and service life. Transp. Res. Rec. J. Transp. Res. Board. 2349, 100–107 (2013)

    Article  Google Scholar 

  17. Elshaeb, A.M.; El-Badawy, M.S.; Shawaly, E.-S.A.: Development and impact of the egyptian climatic conditions on flexible pavement performance. Am. J. Civil Eng. Archit. 2, 115–121 (2014)

    Article  Google Scholar 

  18. Gupta, A.; Kumar, P.; Rastogi, R.: A critical review of flexible pavement performance models developed for Indian perspective. Indian Highw. 40, 41 (2012)

    Google Scholar 

  19. Yun, T.; Underwood, B.S.; Kim, Y.R.: Time-temperature superposition for HMA with growing damage and permanent strain in confined tension and compression. J. Mater. Civil Eng. 22, 415–422 (2010). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000039

    Article  Google Scholar 

  20. Nima Kargah-Ostadi, S.M.S.: Framework for development and comprehensive comparison of empirical pavement performance models. ASCE J. Transp. Eng. 141, 04015012 (2015). https://doi.org/10.1061/(ASCE)TE.1943-5436.0000779

    Article  Google Scholar 

  21. Terzi, S.: Modeling the pavement serviceability ratio of flexible highway pavements by artificial neural networks. Constr. Build. Mater. 21, 590–593 (2007). https://doi.org/10.1016/j.conbuildmat.2005.11.001

    Article  Google Scholar 

  22. Bianchini, A.; Bandini, P.: Prediction of pavement performance through neuro-fuzzy reasoning. Comput. Civil Infrastruct. Eng. 25, 39–54 (2010). https://doi.org/10.1111/j.1467-8667.2009.00615.x

    Article  Google Scholar 

  23. Al-Rub, R.K.A.; Darabi, M.K.; Huang, C.-W.; Masad, E.A.; Little, D.N.: Comparing finite element and constitutive modelling techniques for predicting rutting of asphalt pavements. Int. J. Pavement Eng. 13, 322–338 (2012)

    Article  Google Scholar 

  24. Bracy, J.; Rada, G.; Wheeier, A.M.: Evaluating the effect of preservation treatments on pavement performance and service life. In: National pavement preservation conference, Nashville, Tennessee (2016)

  25. Haas, R.; Hudson, W.; Zaniewski, J.: Modern Pavement Management. Krieger Publishing Company, Malanar (1994)

    Google Scholar 

  26. Martin, T.; Choummanivong, L.: The benefits of long-term pavement performance (LTPP) research to funders. Transp. Res. Procedia. 14, 2477–2486 (2016). https://doi.org/10.1016/j.trpro.2016.05.311

    Article  Google Scholar 

  27. AASHTO: AASHTO Guide for Design of Pavement Structures 1993. (1993)

  28. El Menshawy, M.; Benharref, A.; Serhani, M.: An automatic mobile-health based approach for EEG epileptic seizures detection. Expert Syst. Appl. 42, 7157–7174 (2015). https://doi.org/10.1016/j.eswa.2015.04.068

    Article  Google Scholar 

  29. Lin, J.-D.; Yau, J.-T.; Hsiao, L.-H.: Correlation analysis between international roughness index (IRI) and pavement distress by neural network. In: 82th Annual Meeting of the Transportation Research Board., Washington, DC (2003)

  30. Dewan, S.; Smith, R.: Estimating International Roughness Index from pavement distresses to calculate vehicle operating costs for the San Francisco Bay area. Transp. Res. Rec. J. Transp. Res. Board. 1816, 65–72 (2002)

    Article  Google Scholar 

  31. Tso, G.K.F.; Yau, K.K.W.: Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy 32, 1761–1768 (2007). https://doi.org/10.1016/j.energy.2006.11.010

    Article  Google Scholar 

  32. Izenman, A.: Modern multivariate statistical techniques. Springer, New York (2008)

    Book  Google Scholar 

  33. Blockeel, H.; De Raedt, L.: Top-down induction of first-order logical decision trees. Artif. Intell. 101, 285–297 (1998). https://doi.org/10.1016/S0004-3702(98)00034-4

    Article  MathSciNet  MATH  Google Scholar 

  34. Breiman, L.: Classification and Regression Trees. Routledge, New York (1984)

    MATH  Google Scholar 

  35. Stewart, J.: Applications of classification and regression tree methods in roadway safety studies. Transp. Res. Rec. J. Transp. Res. Board. 1542, 1–5 (1996)

    Article  Google Scholar 

  36. Cortes, C.; Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  37. Karamizadeh, S.; Abdullah, S.M.; Halimi, M.; Shayan, J.; Rajabi, J.: Advantage and drawback of support vector machine functionality. In: 2014 International Conference on Computer, Communications, and Control Technology (I4CT), pp. 63–65. IEEE (2014)

  38. Ziari, H.; Maghrebi, M.; Ayoubinejad, J.; Waller, S.T.: Prediction of pavement performance. Transp. Res. Rec. J. Transp. Res. Board. 2589, 135–145 (2016). https://doi.org/10.3141/2589-15

    Article  Google Scholar 

  39. Kavousi-Fard, A.; Samet, H.; Marzbani, F.: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst. Appl. 41, 6047–6056 (2014). https://doi.org/10.1016/j.eswa.2014.03.053

    Article  Google Scholar 

  40. Baker, L.; Ellison, D.: The wisdom of crowds - ensembles and modules in environmental modelling. Geoderma 147, 1–7 (2008). https://doi.org/10.1016/j.geoderma.2008.07.003

    Article  Google Scholar 

  41. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996). https://doi.org/10.1007/BF00058655

    Article  MATH  Google Scholar 

  42. Yuan, J.; Wang, K.; Yu, T.; Fang, M.: Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression. Int. J. Mach. Tools Manuf. 48, 47–60 (2008). https://doi.org/10.1016/j.ijmachtools.2007.07.011

    Article  Google Scholar 

  43. Rasmussen, C.; Williams, C.: Gaussian processes for machine learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  44. Kumar, P.; Nigam, S.P.; Kumar, N.: Vehicular traffic noise modeling using artificial neural network approach. Transp. Res. Part C Emerg. Technol. 40, 111–122 (2014). https://doi.org/10.1016/j.trc.2014.01.006

    Article  Google Scholar 

  45. Givargis, S.; Karimi, H.: A basic neural traffic noise prediction model for Tehran’s roads. J. Environ. Manage. 91, 2529–2534 (2010). https://doi.org/10.1016/j.jenvman.2010.07.011

    Article  Google Scholar 

  46. Alexander, D.L.J.; Tropsha, A.; Winkler, D.A.: Beware of R2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf. Model. 55, 1316–1322 (2015). https://doi.org/10.1021/acs.jcim.5b00206

    Article  Google Scholar 

  47. Akarachantachote, N.; Chadcham, S.; Saithanu, K.: Cutoff threshold of variable importance in projection for variable selection. Int. J. Pure Appl. Math. 94, 307–322 (2014)

    Article  Google Scholar 

  48. Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikström, C.: Multi-and Megavariate Data Analysis Basic Principles and Applications. Umetrics Academy, Umeå (2013)

    Google Scholar 

  49. Wold, S.: PLS for multivariate linear modeling. Chemom. Methods Mol. Des. 17, 195–218 (1995)

    Google Scholar 

  50. Arhin, S.A.; Noel, E.C.; Ribbiso, A.: Acceptable international roughness index thresholds based on present serviceability rating. J. Civil Eng. Res. 5, 90–96 (2015). https://doi.org/10.5923/j.jce.20150504.03

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waleed Zeiada.

Appendix

Appendix

Model

Source

Remarks

ANN-FSFS MATLAB code

https://1drv.ms/t/s!AsNDdOuA1FmykDER609orxyac13P

ANN-30-Neuron (Selected Features)

https://1drv.ms/u/s!AsNDdOuA1FmykG34mQTUJcRBgeUL

Complex Tree Model MATLAB code

https://1drv.ms/f/s!AsNDdOuA1FmykGJexCIXDrefSZyG

To make predictions on a new predictor column matrix, X:

yfit = Complex_Tree.predictFcn(X)

SVM Medium Gaussian

https://1drv.ms/f/s!AsNDdOuA1FmykGVL0XeFPpOqsx-n

yfit = SVM_Medium_Gaussian.predictFcn(X)

Ensemble Boosted Tree

https://1drv.ms/f/s!AsNDdOuA1FmykGPDzC9SRQuyUxnU

yfit = Ensemble_Boosted_Trees.predictFcn(X)

Gaussian Process Regression (Exponential GPR)

https://1drv.ms/f/s!AsNDdOuA1FmykGQuwhOIawcRq3Ab

yfit = Exponential_GPR.predictFcn(X)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeiada, W., Dabous, S.A., Hamad, K. et al. Machine Learning for Pavement Performance Modelling in Warm Climate Regions. Arab J Sci Eng 45, 4091–4109 (2020). https://doi.org/10.1007/s13369-020-04398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04398-6

Keywords

Navigation