Skip to main content
Log in

Cobalt-Substituted Heteropolyanion: Synthesis, Characterization, and Application to Oxidation of an Organic Dye in an Aqueous Medium

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present work aimed to remove a toxic organic dye using a recyclable Dawson-type heteropolyanion as a green catalyst. Indeed, a novel molybdenum-substituted heteropolyanion HP2W15Mo3Co2.5O62·20H2O was synthesized and characterized by EDX, IR, 31P-NMR and cyclic voltammetry methods. Thereafter, the synthesized catalyst was used in the oxidation reaction of fuchsine acid (FA) by H2O2. As a result, the catalyst exhibited high catalytic activity in the degradation of FA at natural pH and room temperature. The catalytic oxidation efficiency as 97.97% was found after 120 min under catalyst mass of 0.001 g and H2O2 concentration of 49 µM. By combining the used process with UV radiation at 365 nm, the FA oxidation time becomes three times lower than that seen in the presence of H2O2 only. Moreover, ·OH involvement in dye degradation was confirmed and the H2O2 activation mechanism using HP2W15Mo3Co2.5O62·20H2O as catalyst was proposed. The stability of the recovered catalyst of the FA degradation has been confirmed by IR spectroscopy. Therefore, this study can provide an efficient green way of using cobalt catalyst for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Goti, A.; Cardona, F.: Hydrogen peroxide in green oxidation reactions: recent catalytic processes. In Green Chemical Reactions, Dordrecht (2013)

    Google Scholar 

  2. Teong, S.P.; Li, X.; Zhang, Y.: Hydrogen peroxide as oxidant in biomass-to-chemical processes with industrial interest. Green Chem. 21, 5753 (2019)

    Article  Google Scholar 

  3. Devi, P.; Das, U.; Dalai, A.K.: In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems. Sci. Total Environ. 571, 643–657 (2016)

    Article  Google Scholar 

  4. Wang, Y.; Cao, D.; Zhao, X.: Heterogeneous degradation of refractory pollutants by peroxymonosulfate activated by CoOx-doped ordered mesoporous carbon. Chem. Eng. J. 328, 1112–1121 (2017)

    Article  Google Scholar 

  5. Tabai, A.; Bechiri, O.; Abbessi, M.: Study of the degradation of a toxic dye by the catalytic system (H1.5Fe1.5P2W12Mo6O61, 22H2O)/H2O2. Euro-Mediterr. J. Environ. Integr. 2, 8 (2017)

    Article  Google Scholar 

  6. Sharma, S.; Rani, S.; Kaur, K.; Jindal, S.; Garg, S.: Removal of Acid Violet 19 dye from aqueous solution using sawdust of Indian Rosewood (Dalbergia sissoo) as adsorbent. Environ. Int. J. Sci. Technol. 14, 49–64 (2019)

    Google Scholar 

  7. Lyon, D.K.; Miller, W.K.; Novet, T.; Domaille, P.J.; Evitt, E.; Jonson, D.V.C.; Finke, R.G.: Highly oxidation resistant inorganic-porphyrin analog polyoxometalate oxidation catalysts. J. Am. Chem. Soc. 113, 7209–7221 (1991)

    Article  Google Scholar 

  8. Ciabrini, P.; Contant, R.; FruchartJ, M.: Heteropolyblues: relationship between metal-oxygen-metal bridges and reduction behaviour of octadeca(molybdotungsto) diphosphate anions. Polyhedron 111, 229–1233 (1983)

    Google Scholar 

  9. Sabnis, R.W.: Handbook of biological dyes and stains: synthesis and industrial applications. Hoboken, New Jersey (2010)

    Book  Google Scholar 

  10. Bechiri, O.; Abbessi, M.; Belghiche, R.; Ouahab, L.: Wells-Dawson polyoxometelates [HP2W18–nMonO62] Fe2.5, xH2O; n = 0, 6: Synthesis, spectroscopic characterization and catalytic application for oxidation of dyes. Comptes Rend. Chim. 17, 135–140 (2014)

    Article  Google Scholar 

  11. Abbassi M.: Synthesis and property of vanado-molybdo-tungsto-phosphoric heteropolyanins for application in oxidation catalysis, Paris (1989)

  12. Massart, R.; Contant, R.; Fruchart, J.M.; Ciabrini, J.P.; Fournier, M.: Phosphorus 31-NMR studies on molybdic and tungstic heteropolyanions. Correlation between structure and chemical shift. Inorg. Chem. 16, 2916–2921 (1977)

    Article  Google Scholar 

  13. Belghiche, R.; Bechiri, O.; Abbessi, M.; Golhen, S.; Legal, Y.; Ouahab, L.: 2D and 3D polymeric Wells–Dawson polyoxometelates: synthesis, crystal structures, and cyclic voltammetry of [(M(H2O)4x] [H6− 2xP2W18−nMonO62] (M = Cu II, Co II, Ni II). Inorg. Chem. 48, 6026–6033 (2009)

    Article  Google Scholar 

  14. Ruhlmann, L.; Nadjo, L.; Canny, J.; Contant, R.; Thouvenot, R.: Di- and tetra nuclear Dawson-derived sandwich complexes: synthesis, spectroscopic characterization and electrochemical behavior. Eur. J. Inorg. Chem. 41, 975–986 (2002)

    Article  Google Scholar 

  15. Contant, R.; Abbessi, M.; Canny, J.; Richet, M.; Keita, B.; Belhouari, A.; Nadjo, L.: Synthesis, characterization and electrochemistry of complexes derived from [(1),2,3‐P2Mo2W15O61]10– and first transition metal ions. Eur. J. Inorg. Chem. 62, 567–574 (2000)

    Article  Google Scholar 

  16. Contant, R.; Thouvenot, R.: A reinvestigation of isomerism in the Dawson structure: syntheses and 183 W NMR structural characterization of three new polyoxotungstates [X2W18O62]6− (X = PV, AsV). Inorg. Chim. Acta. 212, 41–50 (1993)

    Article  Google Scholar 

  17. Ueda, T.; Nishimoto, Y.; Saito, R.; Ohnishi, M.; Nambu, J.: Vanadium(V)-substitution reactions of Wells–Dawson-type polyoxometalates: from [X2M18O62]6− (X = P, As; M = Mo, W) to [X2VM17O62]7−. Inorganics 3, 355 (2015)

    Article  Google Scholar 

  18. Modvig, A.; Kumpidet, C.; Riisager, A.; Albert, J.: Ru-doped wells-dawson polyoxometalate as efficient catalyst for glycerol hydrogenolysis to propanediols. Materials 12, 2175 (2019)

    Article  Google Scholar 

  19. Cavani, F.; Mezzogori, R.; Trovarelli, A.: The characterization and the catalytic activity of modified Wells–Dawson-type polyoxometalates in the oxidehydrogenation of isobutane to isobutene. J. Mol. Catal. A: Chem. 205, 599–607 (2003)

    Article  Google Scholar 

  20. Yavuz, Y.; Koparal, A.S.; Artik, A.; Öǧütveren, Ü.B.: Degradation of C.I. Basic Red 29 solution by combined ultrasound and Co2+–H2O2 system. Desalination 249, 828–831 (2009)

    Article  Google Scholar 

  21. Zhang, M.; Annamalai, K.P.; Liu, L.; Chen, T.; Gao, J.; Tao, Y.: Multiwalled carbon nanotube-supported CuCo2S4 as a heterogeneous Fenton-like catalyst with enhanced performance. RSC Adv. 7, 20724–20731 (2017)

    Article  Google Scholar 

  22. Chen, J.; Liu, M.; Zhang, J.; Jin, X.Y.: Electrochemical degradation of bromopyrogallol red in presence of cobalt ions. Chemosphere 53, 1131–1136 (2003)

    Article  Google Scholar 

  23. Xu, A.; Li, X.; Xiong, Z.; Wang, Q.; Cai, Y.; Zeng, Q.: High catalytic activity of cobalt(II)-triethylamine complex towards orange II degradation with H2O2 as an oxidant under ambient conditions. Catal. Commun. 26, 44–47 (2012)

    Article  Google Scholar 

  24. Turrà, N.; Neuenschwander, U.; Baiker, A.; Peeters, J.; Hermans, I.: Mechanism of the catalytic deperoxidation of tert-butylhydroperoxide with cobalt(II) acetylacetonate. Chem. A Eur. J. 16, 13226–13235 (2010)

    Article  Google Scholar 

  25. Shen, Y.; Zhou, Y.; Zhang, Z.; Xiao, K.: Cobalt–copper oxalate nanofibers mediated Fenton degradation of Congo red in aqueous solutions. Ind. Eng. Chem. 52, 153–161 (2017)

    Article  Google Scholar 

  26. Ling, S.K.; Wang, S.; Peng, Y.: Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate. J. Hazard. Mater. 178, 385–389 (2010)

    Article  Google Scholar 

  27. Ertgay, N.; Aca, F.N.: Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: kinetic study. Arab. J. Chem. 10, 1158–S1163 (2017)

    Google Scholar 

  28. Zhou, L.; Song, W.; Chen, Z.; Yin, G.: Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environ. Sci. Technol. 47, 3833–3839 (2013)

    Article  Google Scholar 

  29. Jung, Y.S.; Lim, W.T.; Park, J.; Kim, Y.: Effect of pH on Fenton and Fenton-like oxidation. Environ. Technol. 30, 183–190 (2009)

    Article  Google Scholar 

  30. Shen, Y.; Zhang, Z.; Xiao, K.: Co–Fe hydrotalcites for efficient removal of dye pollutants via synergistic adsorption and degradation. RSC Adv. 59, 1846–91854 (2015)

    Google Scholar 

  31. Misono, M.: Mixed oxides as catalyst supports. Stud. Surf. Sci. Catal. 176, 157–173 (2013)

    Article  Google Scholar 

  32. Bokare, A.D.; Choi, W.: Review of iron-free fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 275, 121–135 (2014)

    Article  Google Scholar 

  33. Jie, H.; Xiaofang, Y.; Bin, M.; Dongsheng, W.: Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: a review. J. Environ. Sci. 39, 97–109 (2016)

    Article  Google Scholar 

  34. Li, X.; Xiong, Z.; Ruan, X.; Xia, D.; Zeng, Q.; Xu, A.: Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: investigation of the role of substrates. Appl. Catal. A Gen. 411, 24–30 (2012)

    Article  Google Scholar 

  35. Duan, L.; Chen, Y.; Zhang, K.; Luo, H.; Huang, J.; Xu, A.: Catalytic degradation of Acid Orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Adv. 5, 84303 (2015)

    Article  Google Scholar 

  36. Yu, F.; Xu, D.; Lei, R.; Li, N.: Free-radical scavenging capacity using the Fenton reaction with Rhodamine B as the spectrophotometric indicator. Agric. Food. Chem. J. 56, 730–773 (2008)

    Article  Google Scholar 

  37. Cataldo, F.: Hydrogen peroxide photolysis with different UV light sources including a new UV-led light source. New Front. Chem. 23, 99–110 (2014)

    Google Scholar 

  38. Tabai, A., Bechiri, O., Abbessi, M.: Degradation of organic dye using a new homogeneous Fenton-like system based on hydrogen peroxide and a recyclable Dawson-type heteropolyanion. Int J. Ind. Chem. 8, 83–89 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering Environmental Laboratory of Badji Mokhtar University (Annaba-Algeria). This work is a tribute to the late Professor Mostefa Abbessi, God rest his soul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouahiba Bechiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bencedira, S., Bechiri, O., Djenouhat, M. et al. Cobalt-Substituted Heteropolyanion: Synthesis, Characterization, and Application to Oxidation of an Organic Dye in an Aqueous Medium. Arab J Sci Eng 45, 4669–4681 (2020). https://doi.org/10.1007/s13369-020-04392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04392-y

Keywords

Navigation