Skip to main content
Log in

A Generalized Analytical Approach for the Synchronization of Multiple Chaotic Systems in the Finite Time

  • Research Article - Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a new finite-time controller that realizes multi-switching synchronization of chaotic systems with bounded disturbances using the drive and response system synchronization arrangement. The finite-time controller derives the synchronization error to zero within a specified time. The proposed controller consists of three basic terms; each of them accomplishes a distinct objective: (1) stability of the control loop, (2) smooth and fast convergence behavior of the synchronization error, and (3) disturbance rejection. This study also devises a methodology for designing the finite-time controller and describes a general approach that furnishes a systematic procedure for the analysis of the closed loop. The smooth behavior terminology introduced in (2) refers to the over-damped convergence of the synchronization error signals to zero and the synthesis of chattering-free control effort. The analysis, which assures the global stability of the closed loop, uses the second stability theorem of the Lyapunov, while the finite-time stability technique determines the finite-time convergence. This paper includes simulations of two numerical examples for the validation of the theoretical findings and discusses the comparative analysis. The proposed methodology is suitable to design controllers for a wide range of hyper(chaotic) systems. The contributions of the paper are: (1) describe an innovative generalize analytical methodology for the multi-switching combination synchronization of chaotic systems and (2) propose a novel controller design that insures the finite-time synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eroglu, D.; Lamb, J.S.W.; Pereira, T.: Synchronization of chaos and its applications. Contemp. Phys. 58(3), 207–243 (2017)

    Google Scholar 

  2. Qiu, J.; Sun, K.; Wang, T.; Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzz. Syst. 27(11), 2152–2162 (2019)

    Google Scholar 

  3. Qiu, J.; Sun, K.; Rudas, I.J.; Gao, H.: Command filter-based adaptive NN control for mimo nonlinear systems with full-state constraints and actuator hysteresis. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2944761

    Article  Google Scholar 

  4. Hu, D.; Hu, L.; Yan, Y.: Optimization methodology for control strategy of parallel hybrid electric vehicle based on chaos prediction. AIP Adv. 8, 115305 (2018). https://doi.org/10.1063/1.5055644

    Article  Google Scholar 

  5. Sun, K.; Mou, S.; Qiu, J.; et al.: Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full constraints. IEEE Trans. Fuzz. Syst. 27(8), 1587–1601 (2019)

    Google Scholar 

  6. Pecora, L.; Carroll, T.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    MathSciNet  MATH  Google Scholar 

  7. He, G.; Fang, J.A.; Li, Z.; Wang, X.: Synchronization of coupled neural networks with time-varying delays. Arab. J. Sci. Eng. 40(12), 3759–3773 (2015)

    Google Scholar 

  8. Kheiri, H.; Naderi, B.: Dynamical behavior and synchronization of chaotic chemical reactors model. Iran. J. Math. Chem. 6(1), 81–92 (2015)

    MATH  Google Scholar 

  9. Kocamaz, U.E.; Cicek, S.; Uyaroglu, Y.: Secure communication with chaos and electronic circuit design using passivity based synchronization. J. Circ. Syst. Comput. 27(4), 1850057 (2018)

    Google Scholar 

  10. Lu, L.; Zhang, F.; Han, C.: Synchronization transmission of the target signal in the circuit network based on coupling technique. Physics A 535, 122412 (2019)

    Google Scholar 

  11. Khan, A.; Kumar, S.: Measuring chaos and synchronization of chaotic satellite systems using sliding mode control. Optim. Control Appl. Method 39(5), 1–13 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Liu, L.; Xie, G.; Li, R.: Synchronization stability analysis of medical cyber-physical cloud system considering multi-closed-loops. J. Circ. Syst. Comput. 28(12), 1950198 (2019)

    Google Scholar 

  13. Lu, L.; Wei, Q.: Parameter estimation and synchronization in the uncertain financial network. Physics A 535, 122418 (2019)

    Google Scholar 

  14. Cicek, E.; Dasdemir, J.: Output feedback synchronization of multiple robot systems under parametric uncertainties. Tran. Inst. Meas. Control 39(3), 277–287 (2017)

    Google Scholar 

  15. Aghababa, M.P.; Aghababa, H.P.: A novel finite-time sliding mode controller for synchronization of chaotic systems with input nonlinearity. Arab. J. Sci. Eng. 38(11), 3221–3232 (2013)

    MathSciNet  Google Scholar 

  16. Yang, C.C.: Adaptive single input control for synchronization of a 4D Lorenz-Stenflo chaotic system. Arab. J. Arab. J. Sci. Eng. 39(3), 2413–2426 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Al-Azzawi, S.F.; Aziz, M.M.: Chaos synchronization of nonlinear dynamical systems via a novel analytical approach. Alex. Eng. J. 57(4), 3493–3500 (2018)

    Google Scholar 

  18. Ahmad, I.; Saaban, A.; Ibrahim, A.; Shahzad, M.; Naveed, N.: The synchronization of chaotic systems with different dimensions by a robust generalized active control. Optik 127(11), 4859–4871 (2016)

    Google Scholar 

  19. Chen, X.; Cao, J.; Park, J.; Huang, T.; Zong, G.; Qiu, J.: Finite-time complex function synchronization of multiple complex variable chaotic systems with network transmission and combination mode. J. Vib. Control 24(22), 1–11 (2018)

    MathSciNet  Google Scholar 

  20. Li, D.; Cao, J.: Global finite-time output feedback synchronization for a class of high-order nonlinear systems. Nonlinear Dyn. 22(1–2), 1027–1037 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Yang, X.; Lu, J.: Finite-time synchronization of coupled networks with Markovian topology and impulsive effects. IEEE Trans. Auto Control 61(8), 2256–2261 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Bao, H.; Cao, J.: Finite-time generalized synchronization of non-identical delayed chaotic systems. Nonlinear Anal. Model. Control 21(3), 306–324 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Yang, X.; Song, X.; Liang, J.; He, H.: Finite-time synchronization of coupled discontinuous neural networks with mixed delays and non-identical perturbations. J. Franklin Inst. 352(10), 4382–4406 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Xi, X.; Mobayen, S.; Ren, H.; Jafari, S.: Robust finite-time synchronization of a class of chaotic systems via adaptive global sliding mode control. J. Vib. Control 24(7), 1–13 (2018)

    MathSciNet  Google Scholar 

  25. Li, S.; Tian, Y.-P.: Finite time synchronization of chaotic systems. Chaos Solit. Fract. 15(2), 303–3110 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Wang, H.; Han, Z.; Xie, X.; Zhang, W.: Finite-time chaos synchronization of unified chaotic system with uncertain parameters. Commun. Non. Sci. Numer. Simul. 14(5), 2239–2247 (2009)

    Google Scholar 

  27. Yang, W.; Xia, X.; Dong, Y.; Zheng, S.: Finite-time synchronization between two different chaotic systems with uncertain parameters. Comput. Inform. Sci. 3(3), 174–179 (2010)

    Google Scholar 

  28. Cai, N.; Li, W.; Jing, Y.; Feng, Z.: Finite-time generalized synchronization of chaotic systems with different order. Nonlinear Dyn. 64(4), 385–393 (2011)

    MathSciNet  Google Scholar 

  29. Kim, D.; Gillespie, R.; Chang, P.: Simple, robust control and synchronization of the Lorenz system. Nonlinear Dyn. 73(1–2), 971–980 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Chen, Q.; Ren, X.; Na, J.: Robust finite-time chaos synchronization of uncertain permanent synchronous motors. ISA Trans. 21(3), 262–269 (2015)

    Google Scholar 

  31. Shi, L.; Yang, X.; Li, Y.; Feng, Z.: Finite-time synchronization of non-identical chaotic systems with multiple time-varying delays and bounded perturbations. Nonlinear Dyn. 83(1–2), 75–87 (2016)

    MATH  Google Scholar 

  32. Chen, X.; Cao, J.; Park, J.; Huang, T.; Qiu, J.: Finite-time multi-switching synchronization behavior for multiple chaotic systems with network transmission mode. J. Franklin Inst. 355(5), 2892–2911 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, W.; Li, C.; He, X.; Li, H.: Finite-time synchronization of complex networks with non-identical nodes and impulsive disturbances. Mod. Phys. Lett. B 32(1), 1850002 (2018)

    MathSciNet  Google Scholar 

  34. Li, Q.; Guo, J.; Sun, C.; Wu, Y.; Ding, Z.: Finite-time synchronization for a class of dynamical complex networks with non-identical nodes and uncertain disturbances. J. Syst. Sci. Comput. 32(3), 818–834 (2018)

    MATH  Google Scholar 

  35. Khan, A.; Budhraja, M.; Ibrahim, A.: Synchronization among different switches of four non-identical chaotic systems via adaptive control. Arab. J. Sci. Eng. 44(3), 2717–2728 (2019)

    Google Scholar 

  36. Ahmad, I.; Shafiq, M.; Alsawalha, M.M.: Globally exponential multiswitching-combination synchronization control of chaotic systems for secure communications. Chin. J. Phys. 56(3), 974–987 (2018)

    Google Scholar 

  37. Vincent, U.E.; Saseyi, A.O.; McClintock, P.E.: Multi-switching combination synchronization of chaotic systems. Nonlinear Dyn. 82(1–2), 845–854 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Zheng, S.: Multi-switching combination synchronization of three different chaotic oscillators via nonlinear control. Optik 127(21), 10247–10258 (2016)

    Google Scholar 

  39. Khan, A.; Khattar, D.; Prajapati, N.: Dual combination-combination multi switching synchronization of eight chaotic systems. Chin. J. Phys. 55(4), 1209–1218 (2017)

    Google Scholar 

  40. Ahmad, I.; Shafiq, M.; Shahzad, K.: Global finite-time multi switching synchronization of externally perturbed chaotic oscillators. J. Circ. Syst. Signal Process. 37(12), 5253–5278 (2018)

    MathSciNet  Google Scholar 

  41. Bhat, S.; Bernstein, D.: Finite time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Khalil, H.K.: Non-Linear Systems. Prentice-Hall, New Jersey (2002)

    Google Scholar 

  43. Sun, J.; Shen, Y.; Zhang, G.; Xu, C.; Cui, G.: Combination–combination synchronization among four identical or different chaotic systems. Nonlinear Dyn. 73(3), 1211–1222 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Shimizu, T.; Morioka, N.: On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model. Phys. Lett. A 76(3–4), 201–204 (1980)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israr Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Shafiq, M. A Generalized Analytical Approach for the Synchronization of Multiple Chaotic Systems in the Finite Time. Arab J Sci Eng 45, 2297–2315 (2020). https://doi.org/10.1007/s13369-019-04304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04304-9

Keywords

Navigation