Skip to main content
Log in

Adaptive mechanism for synchronization of chaotic oscillators with interval time-delays

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the adaptive feedback controller design for the synchronization of chaotic systems with interval time-delays in their state vectors by exploiting a lower and an upper bound on time-delays. Simple control and adaptation laws are developed for chaos synchronization, and linear matrix inequalities (LMIs) are derived to ensure asymptotic convergence of the synchronization error between the master–slave systems, using the proposed feedback control strategy, by employing a novel treatment of Lyapunov–Krasovskii functional. Further, the proposed strategy is strengthened by exploiting \(L_2 \) stability against disturbances and perturbations and corresponding LMIs for robust adaptive controller synthesis are derived. Furthermore, a novel delay-range-dependent robust adaptive synchronization control approach for dealing with locally Lipschitz non-delayed and delayed nonlinearities in the dynamics of chaotic oscillators is provided by employing an additional adaptation law for the nonlinearities. A numerical simulation example is provided to illustrate effectiveness of the proposed synchronization approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Feki, M., Robert, B., Gelle, G., Colas, M.: Secure digital communication using discrete-time chaos synchronization. Chaos Solitons Fractals 18, 881–890 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Xie, Q., Chen, G., Bollt, E.M.: Hybrid chaos synchronization and its application in information processing. Math. Comput. Model. 35, 145–163 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Zhang, Z., Chau, K.T., Wang, Z.: Chaotic speed synchronization control of multiple induction motors using stator flux regulation. IEEE Trans. Magn. 48, 4487–4490 (2012)

    Article  Google Scholar 

  4. Park, J.H., Ji, D.H., Won, S.C., Lee, S.M.: \(H_{\infty }\) synchronization of time-delayed chaotic systems. Appl. Math. Comput. 204, 170–177 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Rehan, M., Hong, K.-S.: LMI-based robust adaptive synchronization of FitzHugh–Nagumo neurons with unknown parameters under uncertain external electrical stimulation. Phys. Lett. A 375, 1666–1670 (2011)

    Article  MATH  Google Scholar 

  6. Lin, W.: Adaptive chaos control and synchronization in only locally Lipschitz systems. Phys. Lett. A 372, 3195–3200 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Liu, D., Wu, Z., Ye, Q.: Adaptive impulsive synchronization of uncertain drive-response complex-variable chaotic systems. Nonlinear Dyn. 75, 209–216 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Aghababa, M.P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model. 35, 3080–3091 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Li, S., Xu, W., Li, R.: Synchronization of two different chaotic systems with unknown parameters. Phys. Lett. A. 361, 98–102 (2007)

    Article  MATH  Google Scholar 

  10. Zhang, R., Yang, S.: Robust synchronization of two different fractional-order chaotic systems with unknown parameters using adaptive sliding mode approach. Nonlinear Dyn. 71, 269–278 (2013)

    Article  Google Scholar 

  11. Jin, X.-Z., Yang, G.-H.: Adaptive pinning synchronization of a class of nonlinearly coupled complex networks. Commun. Nonlinear Sci. Numer. Simul. 18, 316–326 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhang, H., Huang, W., Wang, Z., Chai, T.: Adaptive synchronization between two different chaotic systems with unknown parameters. Phys. Lett. A 350, 363–366 (2006)

    Article  MATH  Google Scholar 

  13. Shahverdiev, E.M., Shore, K.A.: Synchronization of chaos in unidirectionally and bidirectionally coupled multiple time delay laser diodes with electro-optical feedback. Opt. Commun. 282, 310–316 (2009)

    Article  Google Scholar 

  14. Liu, P.-L.: Delay-dependent global exponential robust stability for delayed cellular neural networks with time-varying delay. ISA Trans. 52, 711–716 (2013)

    Article  Google Scholar 

  15. He, W., Qian, F., Cao, J., Han, Q.-L.: Impulsive synchronization of two nonidentical chaotic systems with time-varying delay. Phys. Lett. A 375, 498–504 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhang, D., Xu, J.: Projective synchronization of different chaotic time-delayed neural networks based on integral sliding mode controller. Appl. Math. Comput. 217, 164–174 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zaheer, M.H., Rehan, M., Mustafa, G., Ashraf, M.: Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling. ISA Trans. 53, 1716–1730 (2014)

    Article  Google Scholar 

  18. Liu, C., Wang, J., Yu, H., Deng, B., Wei, X., Tsang, K., Chan, W.: Impact of delays on the synchronization transitions of modular neuronal networks with hybrid synapses. Chaos 23, 033121 (2013)

    Article  Google Scholar 

  19. Rehan, M., Hong, K.-S.: Robust synchronization of delayed chaotic Fitz-Hugh Nagumo neurons under external electrical stimulation. Comput. Math. Methods Med. 2012, 230980 (2012)

    Article  MathSciNet  Google Scholar 

  20. Iqbal M., Rehan, M., Khaliq, A., Rehman, S.-u.-, Hong, K.-S.: Synchronization of coupled different chaotic FitzHugh-Nagumo neurons with unknown parameters under communication-direction-dependent coupling. Comput. Math. Methods Med. 2014, 367173 (2014)

  21. Zhang, X., Yang, J., Wu, F.P., Wu, W.J., Jiang, M., Chen, L., Wang, H.J., Qi, G.X., Huang, H.B.: Synchronization of time-delayed chemically coupled burst-spiking neurons with correlated noises. Eur. Phys. J. E. Soft Matter 37, 53 (2014)

    Article  Google Scholar 

  22. Ao, X., Hänggi, P., Schmid, G.: In-phase and anti-phase synchronization in noisy Hodgkin–Huxley neurons. Math. Biosci. 245, 49–55 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bekkers, J.M.: Synaptic transmission: functional autapses in the cortex. Curr. Biol. 13, R433–R435 (2003)

    Article  Google Scholar 

  24. Herrmann, C.S., Klaus, A.: Autapse turns neuron into oscillator. Int. J. Bifurcation Chaos 14, 623 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)

    Article  Google Scholar 

  26. Wang, H., Ma, J., Chen, Y., Chen, Y.: Effect of an autapse on the firing pattern transition in a bursting neuron. Commun. Nonlinear Sci. Numer. Simul. 19, 3242–3254 (2014)

    Article  MathSciNet  Google Scholar 

  27. Qin, H., Ma, J., Wang, C., Wu, Y.: Autapse-induced spiral wave in network of neurons under noise. Plos One 9, e100849 (2014)

    Article  Google Scholar 

  28. Zhao, L.D., Hu, J.-B., Fang, J.A., Cui, W.-X., Xu, Y.-L., Wang, X.: Adaptive synchronization and parameter identification of chaotic system with unknown parameters and mixed delays based on a special matrix structure. ISA Trans. 52, 738–743 (2013)

    Article  Google Scholar 

  29. Ahn, C.K.: Adaptive \(H_{\infty }\) anti-synchronization for time-delayed chaotic neural networks. Progr. Theor. Phys. 122, 1391–1403 (2009)

    Article  MATH  Google Scholar 

  30. Ahn, C.-K., Kim, P.S.: T–S fuzzy adaptive delayed feedback synchronization for time-delayed chaotic systems with uncertain parameters. Int. J. Mod. Phys. B 25, 3253–3267 (2011)

    Article  MATH  Google Scholar 

  31. Shabnam, P., Paknosh, K.: Simple adaptive output-feedback lag-synchronization of multiple time-delayed chaotic systems. Chaos 22, Article No. 023145 (2012)

  32. Wang, T., Zhou, W., Zhao, S., Yu, W.: Robust master–slave synchronization for general uncertain delayed dynamical model based on adaptive control scheme. ISA Trans. 53, 335–340 (2014)

    Article  Google Scholar 

  33. Yang, X., Cao, J., Yao, L., Weiguo, R.: Adaptive lag synchronization for competitive neural networks with mixed delays and uncertain hybrid perturbations. IEEE Trans. Neural Netw. 21, 1347–1356 (2010)

    Google Scholar 

  34. Lu, J., Cao, J., Ho, D.W.C.: Adaptive stabilization and synchronization for chaotic Lur’e systems with time-varying delay. IEEE Trans. Circuits Syst. I Reg. Pap. 55, 592–602 (2008)

    MathSciNet  Google Scholar 

  35. Zhu, Q., Cao, J.: Adaptive synchronization of chaotic Cohen–Crossberg neural networks with mixed time delays. Nonlinear Dyn. 61, 517–534 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Yousef, F., Nooshin, B.: Robust adaptive intelligent sliding model control for a class of uncertain chaotic systems with unknown time-delay. Nonlinear Dyn. 67, 2225–2240 (2012)

    Article  MATH  Google Scholar 

  37. Yue, D., Li, H.: Synchronization stability of continuous/discrete complex dynamical networks with interval time-varying delays. Neurocomputing 73, 809–819 (2010)

  38. Zhan, H., Gong, D., Chen, B., Liu, Z.: Synchronization for coupled neural networks with interval delay: a novel augmented Lyapunov–Krasovskii functional method. IEEE Trans. Neural Netw. Learn. Syst. 24, 58–70 (2013)

    Article  Google Scholar 

  39. Karimi, H.R., Maass, P.: Delay-range-dependent exponential \(H_{\infty }\) synchronization of a class of delayed neural networks. Chaos Solitons Fractals 41, 1125–1135 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Rehan.

Appendices

Appendix 1: Delay-dependent case of Theorem 2

Corollary 5.1

Consider the time-delay master–slave chaotic systems (1) and (4), the adaptive nonlinear controller (8) and the error dynamics (10) satisfying time-delay bounds in (2)–(3) with \(\tau _1 =0\), \(\tau _2 =\tau >0\), and \(\mu =0\) and Assumption 1. Suppose there exist matrices \(P=P^\mathrm{T}>0\), \(R=R^\mathrm{T}>0\), \(Q=Q^\mathrm{T}>0\), \(X=X^\mathrm{T}>0\) and \(W=W^\mathrm{T}>0\), a matrix M of appropriate dimensions and a scalar \(\eta >0\) such that the LMI

$$\begin{aligned} \left[ {{\begin{array}{ccccccccc} {\Delta ^{(4)}}&{} {PA_d }&{} W&{} {PB}&{} {PB_d }&{} {PH}&{} I&{} 0&{} I \\ *&{} {-R}&{} {-W}&{} 0&{} 0&{} 0&{} 0&{} I&{} 0 \\ *&{} *&{} {-\frac{1}{\tau }Q}&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ *&{} *&{} *&{} {-I}&{} 0&{} 0&{} 0&{} 0&{} 0 \\ *&{} *&{} *&{} *&{} {-I}&{} 0&{} 0&{} 0&{} 0 \\ *&{} *&{} *&{} *&{} *&{} {-\eta I}&{} 0&{} 0&{} 0 \\ *&{} *&{} *&{} *&{} *&{} *&{} {-\frac{1}{L_f^2 }I}&{} 0&{} 0 \\ *&{} *&{} *&{} *&{} *&{} *&{} *&{} {-\frac{1}{L_g^2 }I}&{} 0 \\ *&{} *&{} *&{} *&{} *&{} *&{} *&{} *&{} {-X} \\ \end{array} }} \right] <0 \end{aligned}$$

holds, where

$$\begin{aligned} \Delta ^{(4)}=A^\mathrm{T}P+PA+M+M^\mathrm{T}+R+\tau Q. \end{aligned}$$

If the controller feedback gains are taken to be \(K=P^{-1}M\) and \(\varepsilon =O^{n\times n}\) in (8) and the adaptive parameters are updated according to (12), then the synchronization error \(e(t)\) is globally asymptotically stable at the origin under \(d(t)=0\) and the \(L_2 \) gain from the disturbance \(d(t)\) to the synchronization error \(e(t)\) remains bounded under \(d(t)\ne 0\).

In Corollary 5.1, a delay-dependent robust adaptive control outline for chaos synchronization is inferred from the main approach in Theorem 2 using \(\tau _1 =0\), \(\mu =0\) and \(R_1 =R_2 =0\). Similar synchronization control results, using adaptive state feedback approach, based on the traditionalistic LK functionals, are available in the literature [2830] and [32]. Indeed, an extrapolated LK functional arrangement is applied for derivation of the delay-range-dependent adaptive control laws in Theorems 1 and 2.

Appendix 2: Delay-dependent case of Theorem 3

Corollary 5.2

Consider the time-delay master–slave chaotic systems (1) and (8), the adaptive nonlinear controller (8) and the error dynamics (10), satisfying Assumption 1 in a local region, Assumption 2, and the delay bounds in (2)–(3) with \(\tau _1 =0\), and \(\tau _2 =\tau >0\). Suppose there exist matrices \(P=P^\mathrm{T}>0\), \(R=R^\mathrm{T}>0\), \(Q=Q^\mathrm{T}>0\), \(Q_g =Q_g^\mathrm{T} >0\), \(X=X^\mathrm{T}>0\) and \(W=W^\mathrm{T}>0\) , a matrix \(K\) of appropriate dimensions and a scalar \(\eta >0\) such that the LMI

$$\begin{aligned} \left[ {{\begin{array}{llllll} {\coprod \nolimits ^{(3)}}&{} {A_d }&{} W&{} 0&{} H&{} I \\ *&{} {-(1-\mu )R}&{} {-W}&{} 0&{} 0&{} 0 \\ *&{} *&{} {-\frac{1}{\tau }Q}&{} 0&{} 0&{} 0 \\ *&{} *&{} *&{} {B_d^\mathrm{T} B_d -(1-\mu )Q_g }&{} 0&{} 0 \\ *&{} *&{} *&{} *&{} {-\eta I}&{} 0 \\ *&{} *&{} *&{} *&{} *&{} {-X} \\ \end{array} }} \right] <0 \end{aligned}$$

holds, where

$$\begin{aligned} \coprod \nolimits ^{(3)}=A^\mathrm{T}+A+K+K^\mathrm{T}+R+\tau Q. \end{aligned}$$

If the adaptive gain of the controller is selected as \(\varepsilon ={\text {diag}}(\varepsilon _1 ,\varepsilon _2 ,\ldots ,\varepsilon _n )\) and the adaptive parameters are updated according to (12) and (28), the synchronization error \(e(t)\) is globally asymptotically stable at the origin under \(d(t)=0\) and the \(L_2 \) gain from the disturbance \(d(t)\) to the synchronization error \(e(t)\) remains bounded under bounded disturbances satisfying \(d(t)\ne 0\).

Corollary 5.2 establishes an adaptive delay-dependent control schema for attaining identical behavior of the chaotic oscillators (1) and (4) under disturbances and locally Lipschitz nonlinearities as a special result of the proposed approach in Theorem 3. It has been observed that the delay-dependent synchronization schemes, not unlike Corollary 5.2, rendering an adaptive dealing of both the non-delayed and the delayed locally Lipschitz nonlinear functions are deficient in the literature.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafique, M.A., Rehan, M. & Siddique, M. Adaptive mechanism for synchronization of chaotic oscillators with interval time-delays. Nonlinear Dyn 81, 495–509 (2015). https://doi.org/10.1007/s11071-015-2007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2007-3

Keywords

Navigation