Skip to main content
Log in

Comparative Study of Biological (Phoenix loureiroi Fruit) and Chemical Synthesis of Chitosan-Encapsulated Zinc Oxide Nanoparticles and their Biological Properties

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present study, the effect of in vitro antioxidant and cytotoxic properties was investigated in the biologically and chemically synthesized zinc oxide (ZnO)- and chitosan (CTS)-encapsulated ZnO (ZnO–CTS) nanoparticles. The nanoparticles were biologically synthesized using Phoenix loureiroi fruit and characterized using Fourier transform infrared, X-ray diffraction, scanning electron microscopy, field emission scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy and ultra violet-diffuse reflectance spectroscopy. The biologically synthesized ZnO–CTS nanoparticles (B-ZnO–CTS) results revealed good chemical structure (H–N–H, O–H, C=O, Zn and O groups), crystalline size (18 nm), morphology (spherical), elemental composition (Zn = 61.10%; O = 25.86%; C = 13.04%) and optical properties (λ = 374 nm; Eg = 3.18 eV). The B-ZnO–CTS also exhibited higher DPPH· (IC50 = 419.32 µg/mL), ABTS·+ (45.61%), nitric oxide (21.28%), hydroxyl radical (77.10%) scavenging activities and superoxide anion radical production (27.89%). The cytotoxicity of B-ZnO–CTS revealed less hemolytic property (2.17%) and inhibited the Caco-2 cancerous cell viability (IC50 = 70.45 µg/mL). In conclusion, biological synthesis presents better prospects in pharmacotherapeutic applications in nano-herbal drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anonymous.: The Wealth of India, Raw Materials, vol. 3, pp. 24. Council of Scientific and Industrial Publication and Information Directorate, New Delhi (1969)

  2. Murugan, R.; Chandran, R.; Parimelazhagan, T.: Effect of in vitro simulated gastrointestinal digestion of Phoenix loureirii on polyphenolics, antioxidant and acetylcholinesterase inhibitory activities. LWT-Food Sci. Technol. 74, 363–370 (2016)

    Google Scholar 

  3. Murugan, R.; Saravanan, S.; Parimelazhagan, T.: Study of intestinal anti-inflammatory activity of Phoenix loureiroi Kunth (Arecaceae) fruit. Biomed. Pharmacother. 93C, 156–164 (2017)

    Google Scholar 

  4. AbouZaid, O.A.R.; Sonbaty, S.M.E.; Sogheer, H.M.: Evaluation of protective and therapeutic role of zinc oxide nanoparticles and aloin on dextran sulfate-induced ulcerative colitis in rats. Benha Vet. Med. J. 30, 208–218 (2016)

    Google Scholar 

  5. Wang, J.; Lee, J.S.; Kim, D.; Zhu, L.: Exploration of zinc oxide nanoparticles as a multitarget and multifunctional anticancer nanomedicine. ACS Appl. Mater. Interface 9, 39971–39984 (2017)

    Google Scholar 

  6. Schneider, J.C.: Can microparticles contribute to inflammatory bowel disease: innocuous or inflammatory? Exp. Biol. Med. (Maywood) 232, 1–2 (2007)

    Google Scholar 

  7. Kang, T.; Guan, R.; Chen, X.; Song, Y.; Jiang, H.; Zhao, J.: In vitro toxicity of different sized ZnO nanoparticles in Caco-2 cells. Nanoscale Res. Lett. 8, 1–8 (2013)

    Google Scholar 

  8. Song, Y.; Guana, R.; Lyub, F.; Kanga, T.; Wu, Y.; Chen, X.: In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Mutat. Res. 769, 113–118 (2014)

    Google Scholar 

  9. Dutta, P.K.; Ravikumar, M.N.; Dutta, J.: Chitin and chitosan for versatile applications. J. Macromol. Sci. Part C. 42, 307–354 (2002)

    Google Scholar 

  10. Krishna Sailaja, A.; Amareshwar, P.; Chakravarty, P.: Chitosan nanoparticles as a drug delivery system. Res. J. Pharm. Biol. Chem. Sci. 3, 474–484 (2010)

    Google Scholar 

  11. Sangeetha, G.; Rajeshwari, S.; Venckatesh, R.: Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties. Mater. Res. Bull. 46, 2560–2566 (2011)

    Google Scholar 

  12. Prakash, T.; Jayaprakash, R.; Neri, G.; Kumar, S.: Synthesis of ZnO nanostructures by microwave irradiation using albumen as a template. J. Nanopart. Article ID 274894, 1–8 (2013)

    Google Scholar 

  13. Girigoswami, K.; Viswanathan, M.; Murugesan, R.; Girigoswami, A.: Studies on polymer-coated zinc oxide nanoparticles: UV-blocking efficacy and in vivo toxicity. Mater. Sci. Eng. C 56, 501–510 (2015)

    Google Scholar 

  14. Parimelazhagan, T.: Pharmacological Assays of Plant Based Natural Products. Progress in Drug Research. Springer, Berlin (2016)

    Google Scholar 

  15. Beauchamp, C.; Fridovich, I.: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287 (1971)

    Google Scholar 

  16. Rajavel, K.; Gomathi, R.; Manian, S.; Rajendra Kumar, R.T.: In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing. Langmuir 30, 592–601 (2014)

    Google Scholar 

  17. Das, D.; Nath, B.C.; Phukon, P.; Kalita, A.; Doluia, S.K.: Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloid. Surf. B Biointerfaces 111, 556–560 (2013)

    Google Scholar 

  18. Mishra, A.; Chaudhary, N.: Study of povidone iodine loaded hydrogels as wound dressing material. Trend Biomater. Artif. Organ 23, 122–128 (2010)

    Google Scholar 

  19. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983)

    Google Scholar 

  20. Yuvakkumar, R.; Suresh, J.; Saravanakumar, B.; Nathanaeld, A.J.; Honga, S.I.; Rajendran, V.: Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137, 250–258 (2015)

    Google Scholar 

  21. Umar, H.; Kavaz, D.; Rizaner, N.: Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int. J. Nanomed. 14, 87–100 (2019)

    Google Scholar 

  22. Getie, S.; Belay, A.; Chandra Reddy, A.R.; Belay, Z.: Synthesis and characterizations of zinc oxide nanoparticles for antibacterial applications. J. Nanomed. Nanotechnol. S8, 1–8 (2017)

    Google Scholar 

  23. Venu Gopal, V.R.; Susmita, K.: Effect of temperature on the morphology of ZnO nanoparticles: a comparative study. Appl. Nanosci. 7, 75–82 (2017)

    Google Scholar 

  24. Veena, R.; Srimathi, K.; Panigrahi, P.N.; Subramaniam, G.A.: Comparative approach for the synthesis and characterization of ZnO nanoparticles: green and chemical method. Int. J. Technol. Res. Appl. 38, 27–31 (2016)

    Google Scholar 

  25. Leceta, I.; Guerrero, P.; Ibarburu, I.; Duenasb, M.T.; De La Cabaa, K.: Characterization and antimicrobial analysis of chitosan based films. J. Food Eng. 116, 889–899 (2013)

    Google Scholar 

  26. Nagajyothi, P.C.; Cha, S.J.; Yang, I.J.; Sreekanth, T.V.M.; Kim, K.J.; Heung, M.S.: Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B Biol. 146, 10–17 (2015)

    Google Scholar 

  27. Yan, E.; Wang, C.; Wang, S.; Sun, L.; Wang, Y.; Fan, L.; Zhang, D.: Synthesis and characterization of fluorescent chitosan-ZnO hybrid nanospheres. Mater. Sci. Eng. B 176, 458–461 (2011)

    Google Scholar 

  28. Nagajyothi, P.C.; Sreekanth, T.V.M.; Tettey, C.O.; Jun, Y.I.; Mook, S.H.: Characterization, antibacterial, antioxidant and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg. Med. Chem. Lett. 24, 4298–4303 (2014)

    Google Scholar 

  29. Shujahadeen, B.A.: Morphological and optical characteristics of chitosan(1-x):Cu°x (4 ≤ x≤12) based polymer nano-composites: optical dielectric loss as an alternative method for Tauc’s model. Nanomaterials 7, 1–15 (2017)

    Google Scholar 

  30. Qu, F.; Morais, P.C.: The pH dependence of the surface charge density in oxide-based semiconductor nanoparticles immersed in aqueous solution. IEEE Trans. Magn. 37, 2654–2656 (2001)

    Google Scholar 

  31. Kumar, B.; Smita, K.; Cumbal, L.; Debut, A.: Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorg. Chem. Appl. 523869, 1–7 (2014)

    Google Scholar 

  32. Ranjith, K.S.; Rajendra Kumar, R.T.: Surfactant free, simple, morphological and defect engineered ZnO nanocatalyst: effective study on sunlight driven and reusable photocatalytic properties. J. Photochem. Photobiol. A Chem. 329, 35–45 (2016)

    Google Scholar 

  33. Ranjith, K.S.; Rajendra Kumar, R.T.: Regeneration of an efficient, solar active hierarchial ZnO flower photocatalyst for repeatable usage: controlled desorption of poisoned species from active catalytic sites. RSC Adv. 7, 4983–4992 (2017)

    Google Scholar 

  34. Noudeh, G.D.; Sharififar, F.; Khatib, M.; Behravan, E.; Afzadi, M.A.: Study of aqueous extract of three medicinal plants on cell membrane-permeabilizing and their surface properties. Afric. J. Biotech. 9, 110–116 (2012)

    Google Scholar 

  35. Zohra, M.; Fawzia, A.: Hemolytic activity of different herbal extracts used in Algeria. Int. J. Pharm. Sci. Res. 5, 495–500 (2014)

    Google Scholar 

  36. Singhal, J.P.; Ray, A.R.: Synthesis of blood compatible polyamide block copolymers. Biomaterial 23, 1139–1145 (2002)

    Google Scholar 

  37. Fogh, J.; Fogh, J.M.; Orfeo, T.: One hundred and twenty seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 59, 221–226 (1977)

    Google Scholar 

  38. Oonsivilai, R.; Ferruzzi, M.G.; Ninganond, S.: Antioxidant activity and cytotoxicity of Rang Chuet (Thunbergia laurifolia Lindl.) extracts. Asian J. Food Agro-Ind. 1, 116–128 (2008)

    Google Scholar 

  39. Elavarasan, N.; Kokila, K.; Inbasekar, G.; Sujatha, V.: Evaluation of photocatalytic activity, antibacterial and cytotoxic effects of green synthesized ZnO nanoparticles by Sechium edule leaf extract. Res. Chem. Intermed. 43, 3361–3376 (2017)

    Google Scholar 

  40. Liewhiran, C.; Seraphin, S.; Phanichphant, S.: Synthesis of nano-sized ZnO powders by thermal decomposition of zinc acetate using Broussonetia papyrifera (L.) Vent pulp as a dispersant. Curr. Appl. Phys. 6, 499–502 (2006)

    Google Scholar 

  41. Ong, C.; Ng, L.Y.; Mohammad, A.W.: A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018)

    Google Scholar 

  42. Song, Y.; Guana, R.; Lyub, F.; Kanga, T.; Wu, Y.; Chen, X.: In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Mutat. Res. 769, 113–118 (2014)

    Google Scholar 

  43. Gunjan, K.; Hemali, P.; Pooja, M.; Sumitra, C.: Peltophorum pterocarpum flower-mediated synthesis, characterization, antimicrobial and cytotoxic activities of zno nanoparticles. Arab. J. Sci. Eng. 43, 3393–3401 (2018)

    Google Scholar 

  44. Stan, M.; Popa, A.; Toloman, D.; Silipas, T.; Cristian, D.: Antibacterial and antioxidant activities of ZnO nanoparticles synthesized using extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum. Acta Metall. Sin. (Engl. Lett.) 29, 228–236 (2016)

    Google Scholar 

  45. Lingaraju, K.; Raja, N.H.; Manjunath, K.; Basavaraj, R.B.; Nagabhushana, H.; Nagaraju, G.; Suresh, D.: Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities. Appl. Nanosci. 6, 703–710 (2016)

    Google Scholar 

  46. Sathyabama, S.; Sankaranarayanan, S.: An in vitro biosynthesis of zinc oxide nanoparticles using rich flavonoid extract from the petals of Delonix regia and evaluation of their antioxidant and anticancer properties. Int. J. Pharmacogn. Phytochem. Res. 7, 1112–1119 (2015)

    Google Scholar 

  47. Pavan Kumar, M.A.; Suresh, D.; Nagabhushana, H.; Sharma, S.C.: Beta vulgaris aided green synthesis of ZnO nanoparticles and their luminescence, photocatalytic and antioxidant properties. Eur. Phys. J. Plus. 130, 109 (2015)

    Google Scholar 

  48. Mahendiran, D.; Subash, G.; Arumai Selvan, D.; Rehana, D.; Senthil Kumar, R.; Kalilur Rahiman, A.: Biosynthesis of zinc oxide nanoparticles using plant extracts of Aloe vera and Hibiscus sabdariffa: phytochemical, antibacterial, antioxidant and anti-proliferative studies. BioNanoScience 7, 530–545 (2017)

    Google Scholar 

  49. Rajakumar, G.; Thiruvengadam, M.; Mydhili, G.; Gomathi, T.; Chung, I.: Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst. Eng. 41, 21–30 (2018)

    Google Scholar 

  50. Venkateasan, A.; Prabakaran, R.; Sujatha, V.: Phytoextract-mediated synthesis of zinc oxide nanoparticles using aqueous leaves extract of Ipomoea pes-caprae (L).R.Br revealing its biological properties and photocatalytic activities. Nanotechnol. Environ. Eng. 2, 1–15 (2017)

    Google Scholar 

Download references

Acknowledgements

The author (Murugan Rajan) acknowledges the support of Programa Nacional de Pós-doutorado (PNPD/CAPES-086/2013), Brazil, for postdoctoral fellowship. The authors also acknowledge Defence Research and Development Organization Centre for Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India, to carry out the characterization analysis.

Funding

Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (573781/2008-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Parimelazhagan Thangaraj or Narendra Narain.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, M., Anthuvan, A.J., Muniyandi, K. et al. Comparative Study of Biological (Phoenix loureiroi Fruit) and Chemical Synthesis of Chitosan-Encapsulated Zinc Oxide Nanoparticles and their Biological Properties. Arab J Sci Eng 45, 15–28 (2020). https://doi.org/10.1007/s13369-019-04174-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04174-1

Keywords

Navigation