Skip to main content
Log in

Effect of the Cement–Tailing Ratio on the Hydration Products and Microstructure Characteristics of Cemented Paste Backfill

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Cemented paste backfill (CPB) has been widely incorporated into mining practice as an ideal way to protect the environment and eliminate hidden dangers in mines. In this study, the feasibility of CPB was validated using full tailings from the Xianglushan Tungsten Mine. Through a microexperiment of CPB with different C/Ts, digital images of pores were obtained, and the hydration products were identified for processing with the particle and pore identification and analysis system. The evolution of hydrated products under different cement–tailing ratios (C/Ts) was analyzed. Then, microquantitative indices, such as the porosity and fractal dimensions, were used to analyze the evolution of the pore structures under different C/Ts. The results showed that CPB slump of different proportions ranged between 196 and 232 mm, and its flowability met the basic principle of pumping. When the C/T of the CPB mixture was increased from 1:12 to 1:4, the backfill changed from a nonuniform structure with sparse pores to a dense network structure with a few holes and pores. The C/T had a significant effect on the quantitative characteristics. With an increased C/T, the porosity and average pore area generally decreased, resulting in a decrease in the porosity and enhanced mechanical characteristics. The C/T of the CPB also influenced the fractal dimension and roundness. When the C/T increased from 1:12 to 1:4, there was a decreasing trend in the fractal dimension and roundness. Additionally, the size difference between the pores decreased, and the pores were round, resulting in increased uniaxial compressive strength of the CPB. The probability entropy values of the backfill with different C/Ts were all greater than 0.93, and the pore distribution had no obvious orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fall, M.; Benzaazoua, M.: Advances in predicting performance properties and cost of paste backfill. Tailings Mine Waste 03, 73–85 (2003)

    Google Scholar 

  2. Helinski, M.; Fourie, A.; Fahey, M.; Ismail, M.: Assessment of the self-desiccation process in cemented mine backfills. Can. Geotech. J. 44(10), 1148–1156 (2007)

    Article  Google Scholar 

  3. Yi, X.; Ma, G.; Fourie, A.: Compressive behaviour of fibre-reinforced cemented paste backfill. Geotext. Geomembr. 43(3), 207–215 (2015)

    Article  Google Scholar 

  4. Chen, Q.; Zhang, Q.; Wang, X.; Xiao, C.; Hu, Q.: A hydraulic gradient model of paste-like crude tailings backfill slurry transported by a pipeline system. Environ. Earth Sci. 75(14), 1099 (2016)

    Article  Google Scholar 

  5. Cui, L.; Fall, M.: An evolutiveel as to-plastic model for cemented paste backfill. Comput. Geotech. 71, 19–29 (2016)

    Article  Google Scholar 

  6. Zheng, J.; Zhu, Y.; Zhao, Z.: Utilization of limestone powder and water-reducing admixture in cemented paste backfill of coarse copper mine tailings. Constr. Build. Mater. 124, 31–36 (2016)

    Article  Google Scholar 

  7. Sui, W.; Zhang, D.; Cui, Z.; Wu, Z.; Zhao, Q.: Environmental implications of mitigating overburden failure and subsidences using paste-like backfill mining: a case study. Int. J. Min. Reclam. Env. 29(6), 521–543 (2015)

    Article  Google Scholar 

  8. Liu, L.; Fang, Z.; Qi, C.; Zhang, B.; Guo, L.; Song, K.: Numerical study on the pipe flow characteristics of the cemented paste backfill slurry considering hydration effects. Powder Technol. 343, 454–464 (2019)

    Article  Google Scholar 

  9. Liu, L.; Yang, C.; Qi, C.; Zhang, B.; Guo, L.; Song, K.: An experimental study on the early-age hydration kinetics of cemented paste backfill. Constr. Build. Mater. 212, 283–294 (2019)

    Article  Google Scholar 

  10. Qi, C.; Fourie, A.; Chen, Q.; Liu, P.: Application of first-principles theory in ferrite phases of cemented paste backfill. Miner. Eng. 133, 47–51 (2019)

    Article  Google Scholar 

  11. Huan, C.; Wang, F.H.; Li, S.T.; Zhao, Y.J.; Liu, L.; Wang, Z.H.; Ji, C.F.: A performance comparison of serial and parallel solar-assisted heat pump heating systems in Xi’an, China. Energy Sci. Eng. (2019). https://doi.org/10.1002/ese3.357

  12. Zhang, X.; Jia, Y.; Wang, M.; Liu, L.: Experimental research on heat transfer and strength analysis of backfill with ice grains in deep mines. Sustainability 11, 2486 (2019). https://doi.org/10.3390/su11092486

    Article  Google Scholar 

  13. Wang, M.; Liu, L.; Zhang, X.; Chen, L.; Wang, S.; Jia, Y.: Experimental and numerical investigations of heat transfer and phase change characteristics of cemented paste backfill with PCM. Appl. Therm. Eng. 150, 121–131 (2019)

    Article  Google Scholar 

  14. Zhao, Y.; Li, R.; Ji, C.; Huan, C.; Zhang, B.; Liu, L.: Parametric study and design of an earth air heat exchanger using model experiment for memorial heating and cooling. Appl. Therm. Eng. 148, 838–845 (2019)

    Article  Google Scholar 

  15. Zhao, Y.; Zhang, Z.; Ji, C.; Liu, L.; Zhang, B.; Huan, C.: Characterization of particulate matter from heating and cooling several edible oils. Build. Environ. 152, 204–213 (2019)

    Article  Google Scholar 

  16. Lu, X.; Zhou, W.; Ding, X.; Shi, X.; Luan, B.; Li, M.: Ensemble learning regression for estimating unconfined compressive strength of cemented paste backfill. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2918177

  17. Liu, Z.Q.; Nie, W.; Peng, H.T.; et al.: The effects of the spraying pressure and nozzle orifice diameter on the atomizing rules and dust suppression performances of an external spraying system in a fully-mechanized excavation face. Powder Technol. 350, 62–80 (2019)

    Article  Google Scholar 

  18. Jin, H.; Nie, W.; Zhang, Y.; Wang, H.; Zhang, H.; Bao, Q.; Yan, J.: Development of environmental friendly dust suppressant based on the modification of soybean protein isolate. Processes 7(3), 165 (2019). https://doi.org/10.3390/pr7030165

    Article  Google Scholar 

  19. Xu, C.; Nie, W.; Liu, Z.; et al.: Multi-factor numerical simulation study on spray dust suppression device in coal mining process. Energy (2019) (in press)

  20. Zhang, H.; Nie, W.; Wang, H.; Bao, Q.; Jin, H.; Liu, Y.: Preparation and experimental dust suppression performance characterization of a novel guar gum-modification-based environmentally-friendly degradable dust suppressant. Powder Technol. 339, 314–325 (2018)

    Article  Google Scholar 

  21. Wang, H.; Nie, W.; Cheng, W.M.; et al.: Effects of air volume ratio parameters on air curtain dust suppression in a rock tunnel’s fully-mechanized working face. Adv. Powder Technol. 29, 230–244 (2018)

    Article  Google Scholar 

  22. Liu, Q.; Nie, W.; Hua, Y.; et al.: Research on tunnel ventilation systems: dust diffusion and pollution behaviour by air curtains based on CFD technology and field measurement. Build. Environ. 147, 444–460 (2019)

    Article  Google Scholar 

  23. Cai, P.; Nie, W.; Chen, D.W.; et al.: Effect of air flow rate on pollutant dispersion pattern of coal dust particles at fully mechanized mining face based on numerical simulation. Fuel 239, 623–635 (2019)

    Article  Google Scholar 

  24. Yang, S.B.; Nie, W.; Lv, S.S.; et al.: Effects of spraying pressure and installation angle of nozzles on atomization characteristics of external spraying system at a fully-mechanized mining face. Powder Technol. 343, 754–764 (2019)

    Article  Google Scholar 

  25. Peng, H.T.; Nie, W.; Cai, P.; et al.: Development of a novel wind-assisted centralized spraying dedusting device for dust suppression in a fully mechanized mining face. Environ. Sci. Pollut. Res. 26, 3292–3307 (2019). https://doi.org/10.1007/s11356-018-3264-8

    Article  Google Scholar 

  26. Bao, Q.; Nie, W.; Liu, C.Q.; et al.: Preparation and characterization of a binary-graft-based, water-absorbing dust suppressant for coal transportation. J. Appl. Polym. Sci. (2019). https://doi.org/10.1002/app.47065

    Google Scholar 

  27. Alireza, G.; Mamadou, F.: Strength evolution and deformation behaviour of cemented paste backfill at early ages: effect of curing stress, filling strategy and drainage. Int. J. Min. Sci. Techno. 26(5), 809–817 (2016)

    Article  Google Scholar 

  28. Klein, K.; Simon, D.: Effect of specimen composition on the strength development in cemented paste backfill. Can. Geotech. J. 43(3), 310–324 (2006)

    Article  Google Scholar 

  29. Chang, Q.; Chen, J.; Zhou, H.; Bai, J.: Implementation of paste backfill mining technology in Chinese coal mines. Sci. World J. 2014, 821025 (2014). https://doi.org/10.1155/2014/821025

    Google Scholar 

  30. Ercikdi, B.; Kuekci, G.; Yilmaz, T.: Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings. Constr. Build. Mater. 93, 573–583 (2015)

    Article  Google Scholar 

  31. Cihangir, F.; Ercikdi, B.; Kesimal, A.; Deveci, H.; Erdemir, F.: Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: effect of activator nature, concentration and slag properties. Miner. Eng. 83, 117–127 (2015)

    Article  Google Scholar 

  32. Liu, L.; Fang, Z.; Qi, C.; Zhang, B.; Guo, L.; Song, K.I.: Experimental investigation on the relationship between pore characteristics and unconfined compressive strength of cemented paste backfill. Constr. Build. Mater. 179, 254–264 (2018)

    Article  Google Scholar 

  33. Liu, L.; Fang, Z.Y.; Wu, Y.P.; Lai, X.P.; Wang, P.; Song, K.I.: Experimental investigation of solid–liquid two-phase flow in cemented rock-tailings backfill using Electrical Resistance Tomography. Constr. Build. Mater. 175, 267–276 (2018)

    Article  Google Scholar 

  34. Liu, L.; Song, K.I.; Lao, D.; Kwon, T.H.: Rheological properties of cemented tailing backfill and the construction of a prediction model. Materials 8(5), 2076–2092 (2015)

    Article  Google Scholar 

  35. Xu, W.; Du, J.; Song, W.; Chen, H.: Experiment on the mechanism of consolidating backfill body of extra-fine grain unclassified tailings and cementitious materials. Rock Soil Mech. 34(08), 2295–2302 (2013)

    Google Scholar 

  36. Rakhimova, N.; Rakhimov, R.; Naumkina, N.; Khuzin, N.; Osin, Y.: Influence of limestone content, fineness, and composition on the properties and microstructure of alkali-activated slag cement. Cement Concr. Compos. 72, 268–274 (2016)

    Article  Google Scholar 

  37. Wu, A.; Wang, Y.; Wang, H.; Yin, S.; Miao, X.: Coupled effects of cement type and water quality on the properties of cemented paste backfill. Int. J. Miner. Process. 143, 65–71 (2015)

    Article  Google Scholar 

  38. Qi, C.; Chen, Q.; Fourie, A.; Zhang, Q.: An intelligent modeling framework for mechanical properties of cemented paste backfill. Miner. Eng. 123, 16–27 (2018)

    Article  Google Scholar 

  39. Qi, C.; Chen, Q.; Fourie, A.; Zhao, J.; Zhang, Q.: Pressure drop in pipe flow of cemented paste backfill: experimental and modeling study. Powder Technol. 333, 9–18 (2018)

    Article  Google Scholar 

  40. Qi, C.; Fourie, A.; Chen, Q.: Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill. Constr. Build. Mater. 159, 473–478 (2018)

    Article  Google Scholar 

  41. Qi, C.; Fourie, A.; Chen, Q.; Zhang, Q.: A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill. J. Clean. Prod. 183, 566–578 (2018)

    Article  Google Scholar 

  42. Kupwade-Patil, K.; Al-Aibani, A.; Abdulsalam, M.; Mao, C.; Bumajdad, A.; Palkovic, S.; Buyukozturk, O.: Microstructure of cement paste with natural pozzolanic volcanic ash and Portland cement at different stages of curing. Constr. Build. Mater. 113, 423–441 (2016)

    Article  Google Scholar 

  43. Zou, J.; Chen, W.; Yang, D.; Yu, H.; Tan, X.: Microstructural characteristics of low-rank coal from Hunchun based on SEM. Chin. J. Rock Mech. Eng. 35(09), 1805–1814 (2016)

    Google Scholar 

  44. Dong, Q.; Liang, B.; Jiang, L.; Jia, L.; Wang, K.: Effects on short-term strength of cemented paste backfill under different sulfate contents and cement–tailings ratios. Chin. J. Environ. Eng. 10(10), 5886–5892 (2016)

    Google Scholar 

  45. Yang, L.; Qiu, J.; Fan, K.; Li, H.; Hu, S.: Analysis on strength characteristics of super-fine unclassified tailings cemented backfills. Bull. Chin. Ceram Soc. 36(1), 249–256 (2017)

    Google Scholar 

  46. Yang, J.; Yi, S.; Liu, K.; Liu, Z.; Chen, C.: Study on factors affecting strength of tailings backfill body with response surface method. China Saf. Sci. J. 12, 103–109 (2017)

    Google Scholar 

  47. Zhou, H.; Fang, Y.; Yu, C.: Micro-structure observation and analysis of GuangZhou soft soil during consolidation process. Chin. J. Rock Mech. Eng. S2, 3830–3837 (2009)

    Google Scholar 

  48. Ercikdi, B.; Cihangir, F.; Kesimal, A.; Deveci, H.; Brahim, Alp: Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings. J. Hazard. Mater. 179(1–3), 940–946 (2010)

    Article  Google Scholar 

  49. Chen, X.; Shi, X.; Zhou, J.; Du, X.; Chen, Q.; Qiu, X.: Effect of overflow tailings properties on cemented paste backfill. J. Environ. Manag. 235, 133–144 (2019)

    Article  Google Scholar 

  50. Shen, H.; Wu, A.; Jiang, L.; Wang, Y.; Jian, H.; Liu, X.: Small cylindrical slump test for unclassified tailings paste. J. Cent. South Univ. (Sci. Technol.) 47, 204–208 (2016)

    Google Scholar 

  51. Zhang, J.; Sun, H.; Wan, J.; Zhang, N.: 29 Si polymerization degree of hydrates in coal gangue added cement. J. Cent. South Univ. (Sci. Technol.) 42(2), 329–335 (2011)

    Google Scholar 

  52. Liu, L.; Zhu, C.; Qi, C.; Zhang, B.; Song, K.: A microstructural hydration model for cemented paste backfill considering internal sulfate attacks. Constr. Build. Mater. 211, 99–108 (2019)

    Article  Google Scholar 

  53. Qi, C.; Liu, L.; He, J.; Chen, Q.; Yu, L.; Liu, P.: Understanding cement hydration of cemented paste backfill: DFT study on water adsorption at tricalcium silicate (111) surface. Minerals 9(4), 202 (2019). https://doi.org/10.3390/min9040202

    Article  Google Scholar 

  54. Qi, C.; Tang, X.; Dong, X.; Chen, Q.; Fourie, A.; Liu, E.: Towards intelligent mining for backfill: a genetic programming-based method for strength forecasting of cemented paste backfill. Miner. Eng. 133, 69–79 (2019)

    Article  Google Scholar 

  55. Ercikdi, B.; Baki, H.; İzki, M.: Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill. J. Environ. Manag. 115(115C), 5–13 (2013)

    Article  Google Scholar 

  56. Zhou, K.; Li, J.; Xu, Y.; Zhang, Y.; Yang, P.; Chen, L.: Experimental study of NMR characteristics in rock under freezing and thawing cycles. Chin. J. Rock Mech. Eng. 31(4), 731–737 (2012)

    Google Scholar 

  57. Kumar, M.; Montero, P.J.: Concrete: microstucture, properties, and materials. China Electric Power Press, Beijing (2008)

    Google Scholar 

  58. Bin, S.: Quantitative research on the orientation of microstructures of clayey soil. Acta Geol. Sin. 1, 36–44 (1997)

    Google Scholar 

  59. Zhang, B.; Xin, J.; Liu, L.; Guo, L.; Song, K.: An Experimental study on the microstructures of cemented paste backfill during its developing process. Adv. Civ. Eng. 7, 1–10 (2018)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 51674188, 51874229, 51504182), Shaanxi Innovative Talents Cultivate Program-New-star Plan of Science and Technology (No. 2018KJXX-083), Natural Science Basic Research Plan of Shaanxi Province of China (No. 2015JQ5187), Scientific Research Program funded by the Shaanxi Provincial Education Department (No. 15JK1466), China Postdoctoral Science Foundation (No. 2015M582685), and Outstanding Youth Science Fund of Xi’an University of Science and Technology (No. 2018YQ2-01). This research was also supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2017R1E1A1A01075118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lang Liu or Yan Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Xin, J., Feng, Y. et al. Effect of the Cement–Tailing Ratio on the Hydration Products and Microstructure Characteristics of Cemented Paste Backfill. Arab J Sci Eng 44, 6547–6556 (2019). https://doi.org/10.1007/s13369-019-03954-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03954-z

Keywords

Navigation