Skip to main content
Log in

Heterogeneous Traffic Simulation for Urban Streets Using Cellular Automata

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper aims to develop a simulation model for heterogeneous traffic using cellular automata (CA). A detailed description of the developed CA model used to simulate heterogeneous traffic is presented. Heterogeneous traffic comprises of vehicles of different static and dynamic characteristics. Therefore, the developed model should be capable enough to include the characteristics of different types of vehicles. The results of simulation depict that not only the model includes heterogeneous traffic characteristics but real traffic behavior is also taken care of. The developed model is calibrated and validated using distance headway–speed relationship obtained from field data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagel, K.; Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I2(12), 2221–2229 (1992)

    Google Scholar 

  2. Takayasu, M.; Takayasu, H.: 1/f noise in a traffic model. Fractals 1(04), 860–866 (1993)

    Article  MATH  Google Scholar 

  3. Benjamin, S.C.; Johnson, N.F.; Hui, P.M.: Cellular automata models of traffic flow along a highway containing a junction. J. Phys. A Math. Gen. 29(12), 3119–3127 (1996)

    Article  MATH  Google Scholar 

  4. Barlovic, R.; Santen, L.; Schadschneider, A.; Schreckenberg, M.: Metastable states in cellular automata for traffic flow. Eur. Phys. J. B Condens. Matter Complex Syst. 5(3), 793–800 (1998)

    Article  Google Scholar 

  5. Helbing, D.; Schreckenberg, M.: Cellular automata simulating experimental properties of traffic flow. Phys. Rev. E59(3), R2505–R2508 (1999)

    Google Scholar 

  6. Knospe, W.; Santen, L.; Schadschneider, A.; Schreckenberg, M.: Towards a realistic microscopic description of highway traffic. J. Phys. A Math. Gen. 33(48), L477–L485 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, X.; Wu, Q.; Jiang, R.: Cellular automaton model considering the velocity effect of a car on the successive car. Phys. Rev. E64(6), 066128 (2001)

    Google Scholar 

  8. Bham, G.H.; Benekohal, R.F.: A high fidelity traffic simulation model based on cellular automata and car-following concepts. Transp. Res. C Emerg. Technol. 12(1), 1–32 (2004)

    Article  Google Scholar 

  9. Clarridge, A.; Salomaa, K.: Analysis of a cellular automaton model for car traffic with a slow-to-stop rule. Theor. Comput. Sci. 411(38–39), 3507–3515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, H.; Deng, Y.; Jones, J.: Network division method based on cellular growth and physarum-inspired network adaptation. Int. J. Unconv. Comput. 13(6), 477–491 (2018)

    Google Scholar 

  11. Daganzo, C.F.: The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp. Res. B Methodol. 28(4), 269–287 (1994)

    Article  Google Scholar 

  12. Celikoglu, H.B.: An approach to dynamic classification of traffic flow patterns. Comput. Aided Civ. Infrastruct. Eng. 28(4), 73–288 (2013)

    Article  Google Scholar 

  13. Celikoglu, H.B.: Dynamic classification of traffic flow patterns simulated by a switching multimode discrete cell transmission model. IEEE Trans. Intell. Transp. Syst. 15(6), 2539–2550 (2014)

    Article  Google Scholar 

  14. Silgu, M.A.; Celikoglu, H.B.: Clustering traffic flow patterns by fuzzy C-means method: some preliminary findings. In: International Conference on Computer Aided Systems Theory, 756–764, Springer, Cham (2015)

  15. Celikoglu, H.B.; Silgu, M.A.: Extension of traffic flow pattern dynamic classification by a macroscopic model using multivariate clustering. Transp. Sci. 50(3), 966–981 (2016)

    Article  Google Scholar 

  16. Lan, L.W.; Chang, C.W.: Inhomogeneous cellular automata modeling for mixed traffic with cars and motorcycles. J. Adv. Transp. 39(3), 323–349 (2005)

    Article  Google Scholar 

  17. Mathew, T.V.; Gundaliya, P.; Dhingra, S.L.: Heterogeneous traffic flow modeling and simulation using cellular automata. Appl. Adv. Technol. Transp. 492–497 (2006)

  18. Mallikarjuna, C.; Rao, K.R.: Identification of a suitable cellular automata model for mixed traffic. J. EastAsia Soc. Transp. Stud. 7, 2454–2469 (2007)

    Google Scholar 

  19. Gundaliya, P.J.; Mathew, T.V.; Dhingra, S.L.: Heterogeneous traffic flow modelling for an arterial using grid based approach. J. Adv. Transp. 42(4), 467–491 (2008)

    Article  Google Scholar 

  20. Mallikarjuna, C.; Rao, K.R.: Cellular automata model for heterogeneous traffic. J. Adv. Transp. 43(3), 321–345 (2009)

    Article  Google Scholar 

  21. Lan, L.W.; Chiou, Y.C.; Lin, Z.S.; Hsu, C.C.: Cellular automaton simulations for mixed traffic with erratic motorcycles’ behaviors. Phys. A Stat. Mech. Appl. 389(10), 2077–2089 (2010)

    Article  Google Scholar 

  22. Maurya, A.K.: Comprehensive approach for modeling of traffic streams with no lane discipline. In: 2nd International Conference on Models and Technologies for Intelligent Transportation Systems, Leuven, Belgium (2011)

  23. Mallikarjuna, C.; Rao, K.R.: Heterogeneous traffic flow modelling: a complete methodology. Transportmetrica 7(5), 321–345 (2011)

    Article  Google Scholar 

  24. Vasic, J.; Ruskin, H.J.: Cellular automata simulation of traffic including cars and bicycles. Phys. A Stat. Mech. Appl. 391(8), 2720–2729 (2012)

    Article  Google Scholar 

  25. Pandey, G.; Rao, K.R.; Mohan, D.: A review of cellular automata model for heterogeneous traffic conditions. Traffic Granul. Flow’13 471–478 Springer, Cham (2015)

  26. Kurnaz, I.: Urban traffic modeling with microscopic approach using cellular automata. Tehnički vjesnik 23(6), 1565–1570 (2016)

    Google Scholar 

  27. Pal, D.; Mallikarjuna, C.: Analysis of the effect of variable lateral gap maintaining behavior of vehicles on traffic flow modeling. Proc. Eng. 142, 198–204 (2016)

    Article  Google Scholar 

  28. Liu, Y.; Guo, J.; Taplin, J.; Wang, Y.: Characteristic analysis of mixed traffic flow of regular and autonomous vehicles using cellular automata. J. Adv. Transp. 2017, 1–10 (2017)

    Google Scholar 

  29. Pandey, G.; Rao, K.R.; Mohan, D.: Modelling vehicular interactions for heterogeneous traffic flow using cellular automata with position preference. J. Modern Transp. 25(3), 163–177 (2017)

    Article  Google Scholar 

  30. Arasan, V.T.; Koshy, R.Z.: Methodology for modeling highly heterogeneous traffic flow. J. Transp. Eng. 131(7), 544–551 (2005)

    Article  Google Scholar 

  31. Lv, W.; Song, W.G.; Liu, X.D.; Ma, J.: A microscopic lane changing process model for multilane traffic. Phys. A Stat. Mech. Appl. 392(5), 1142–1152 (2013)

    Article  MathSciNet  Google Scholar 

  32. Chattaraj, U.; Seyfried, A.; Chakroborty, P.; Biswal, M.K.: Modelling single file pedestrian motion across cultures. Proc. Soc. Behav. Sci. 104, 698–707 (2013)

    Article  Google Scholar 

  33. AASHTO, : A Policy on Geometric Design of Highways and Streets. American Association of State Highway and Transportation Officials, Washington, DC (2001)

    Google Scholar 

  34. AASHTO, : A Policy on Geometric Design of Highways and Streets. American Association of State Highway and Transportation Officials, Washington, DC (2004)

    Google Scholar 

  35. Maurya, A.K.; Chakroborty, P.: CASIM: A realistic CA based traffic flow model. In: Proceedings of 11th World Conference on Transportation Research, Berkeley, California, USA (2007)

  36. Abuamer, I.M.; Silgu, M.A.; Celikoglu, H.B.: Micro-simulation based ramp metering on Istanbul freeways: an evaluation adopting ALINEA. In: Intelligent Transportation Systems (ITSC), IEEE 19th International Conference on Intelligent Transportation Systems, 695–700 IEEE (2016)

  37. Abuamer, I.M.; Sadat, M.; Silgu, M.A.; Celikoglu, H.B.: Analyzing the effects of driver behavior within an adaptive ramp control scheme: a case-study with ALINEA. In: Vehicular Electronics and Safety (ICVES), IEEE International Conference on Vehicular Electronics and Safety, 109–114 IEEE (2017)

  38. Abuamer, I.M.; Celikoglu, H.B.: Local ramp metering strategy ALINEA: microscopic simulation based evaluation study on Istanbul freeways. Transp. Res. Proc. 22, 598–606 (2017)

    Article  Google Scholar 

  39. Celikoglu, H.B.; Dell’Orco, M.: A dynamic model for acceleration behaviour description in congested traffic. In Intelligent Transportation Systems, ITSC 2008, 11th International IEEE Conference on Intelligent Transportation Systems, 986–991 IEEE (2008)

  40. Antoniou, C.; Barcelo, J.; Brackstone, M.; Celikoglu, H.B.; Ciuffo, B.; Punzo, V.; Sykes, P.; Toledo, T.; Vortisch, P.; Wagner, P.: Traffic simulation: case for guidelines. In: Brackstone, Punzo, (eds.) JRC Scientific and Technical Report, EUR 26534 EN. Publications Office of the European Union, Luxembourg (2014). ISBN 978-92-79-35578-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A.K., Chattaraj, U. Heterogeneous Traffic Simulation for Urban Streets Using Cellular Automata. Arab J Sci Eng 44, 8557–8571 (2019). https://doi.org/10.1007/s13369-019-03730-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03730-z

Keywords

Navigation