Skip to main content
Log in

Slow Light Propagation in Photonic Crystal-Based Meandering Delay Lines Using the PTS Material

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, rectangular and triangular photonic crystal (PC) delay lines are designed using PTS (p-toluene sulfonate) at 1550 nm. PTS possesses a high nonlinear refractive index; consequently, when it interacts with an incident light, it provides slow light propagation in a PTS-based device due to the Kerr effect. First, a PC waveguide (PCW) is designed by introducing a line defect made of PTS bars. Such a defect, by using PTS, provides two significant advantages; these include slow group velocity and extremely high optical confinement for a propagating wave through the PCW. Then, two similar PCWs are placed next to each other to investigate the crosstalk phenomenon between them. By choosing an appropriate distance between them, the rectangular and triangular PC reflective meandering delay lines are realized. The rectangular lattice PC reflective meandering delay line exhibits lower propagation losses because this lattice shows a higher transmission coefficient at the corners in comparison with the triangular one. On the other hand, the triangular lattice PC reflective meandering delay line provides very low group velocity for a propagating light wave at the wavelength of 1550 nm; as a consequence, a higher slowing factor is achieved for the triangular lattice PC reflective meandering delay line due to the stronger light–PTS interactions. Simulations are performed using LUMERICAL FDTD SOLUTION v8.15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baba, T.; Adachi, J.; Ishikura, N.; Hamachi, Y.; Sasaki, H.; Kawasaki, T.; Mori, D.: Dispersion controlled slow light in photonic crystal waveguides. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85, 443–453 (2009)

    Article  Google Scholar 

  2. Povinelli, M.; Johnson, S.; Joannopoulos, J.: Slow light, band-edge waveguides for tunable time delays. Opt. Express 18, 7145–7159 (2005)

    Article  Google Scholar 

  3. Zhao, Y.; Zhao, H.W.; Zhang, X.Y.; Yuan, B.; Zhang, S.: New mechanisms of slow light and their applications. Opt. Laser Technol. 41, 517–525 (2009)

    Article  Google Scholar 

  4. Khurgin, J.B.: Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. J. Opt. Soc. Am. B 22, 1062 (2005)

    Article  Google Scholar 

  5. Zhuang, L.; Hoekman, M.; Taddei, C.; Leinse, A.; Heideman, R.G.; Hulzinga, A.; Verpoorte, J.; Oldenbeuving, R.M.; Dijk, P.W.L.; Boller, K.J.; Roeloffzen, C.G.H.: On-chip microwave photonic beamformer circuits operating with phase modulation and direct detection. Opt. Express 22, 17079–17091 (2014)

    Article  Google Scholar 

  6. Wei, Z.; Li, X.; Zhong, N.; Tan, X.; Zhang, X.; Liu, H.; Meng, H.; Liang, R.: Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device. Plasmonics 12, 641–647 (2017)

    Article  Google Scholar 

  7. Zhu, Z.M.; Dawes, A.M.C.; Gauthier, D.J.; Zhang, L.; Willner, A.E.: Broadband SBS slow light in an optical fiber. J. Lightwave Technol. 25, 201–206 (2007)

    Article  Google Scholar 

  8. Qin, G.S.; Jose, R.; Ohishi, Y.: Stimulated raman scattering in tellurite glasses as a potential system for slow light generation. J. Appl. Phys. 101(093109), 1–5 (2007)

    Google Scholar 

  9. Zhao, Y.; Zhao, H.W.; Zhang, X.Y.; Yuan, B.; Zhang, S.: New mechanisms of slow light and their applications. Opt. Laser Technol. 41, 517–525 (2009)

    Article  Google Scholar 

  10. Krauss, T.F.: Why do we need slow light. Nat. Photonics 2, 448–450 (2008)

    Article  Google Scholar 

  11. Totsuka, K.; Tomita, M.: Dynamics of fast and slow pulse propagation through a microsphere optical fiber system. Phys. Rev. E 75(016610), 1–5 (2007)

    Google Scholar 

  12. Nair, R.V.; Vijaya, R.: Photonic crystal sensors: an overview. Prog. Quantum Electron. 34, 89–134 (2010)

    Article  Google Scholar 

  13. Taheri, M.; Omoomi, M.: An ultrafast all-optical switch based on a nonlinear photonic crystal waveguide using single crystal \(p\)-toluene sulfonate. Turk. J. Electr. Eng. Comput. Sci. 25, 2207–2218 (2017)

    Article  Google Scholar 

  14. Wan, Y.; Fu, K.; Li, C.H.; Yun, M.J.: Improving slow light efect in photonic crystal line defect waveguide by using eye-shaped scatterers. Opt. Commun. 286(192), 196 (2013)

    Google Scholar 

  15. Zhao, Y.; Zhang, Y.N.; Wang, Q.: Optimization of slow light in slotted photonic crystal waveguide with liquid infiltration. J. Lightwave Technol. 31, 2448–2454 (2013)

    Article  Google Scholar 

  16. Canciamilla, A.; Ferrari, C.; Morichetti, F.; Faolain, L.O.; Rue, R.D.L.; Samarelli, A.; Sorel, M.: Tunable delay lines in silicon photonics: coupled resonators and photonic crystals. IEEE. Photonics. J. 2, 181–194 (2010)

    Article  Google Scholar 

  17. Monat, C.; Corcoran, B.; Pudo, D.; Ebnali, H.M.; Grillet, C.; Pelusi, M.D.; Moss, D.J.; Eggleton, B.J.; White, T.P.; Ofaolain, L.: Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010)

    Article  Google Scholar 

  18. Bakhshi, S.; Morawej, F.M.K.; Ebnali, M.: Design of an ultracompact low-power all-optical modulator by means of dispersion engineered slow light regime in a photonic crystal mach-zehnder interferometer. Appl. Opt. 51, 2687–2692 (2012)

    Article  Google Scholar 

  19. Vlasov, Y.A.; Oboyle, M.; Hamann, H.F.; Mcnab, S.J.: Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005)

    Article  Google Scholar 

  20. Engelen, R.J.P.; Sugimoto, Y.; Watanabe, Y.; Korterik, J.P.; Ikeda, N.; Van, H.N.F.; Asakawa, K.; Kuipers, L.: The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides. Opt. Express 14, 1658–1672 (2006)

    Article  Google Scholar 

  21. Kurt, H.; Stin, K.; Ayas, L.: Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides. Opt. Express 18(26965), 26977 (2010)

    Google Scholar 

  22. Elshahat, S.; Khan, K.; Yadav, A.; Ouyang, Z.: Slow-light transmission with high group index and large normalized delay bandwidth product through successive defect rods on intrinsic photonic crystal waveguide. Opt. Commun. 418, 73–79 (2018)

    Article  Google Scholar 

  23. Zhao, Y.; Zhang, Y.; Wang, Q.; Hu, H.: Review on the optimization methods of slow light in photonic crystal waveguide. IEEE Trans. Nanotechnol. 14, 407–426 (2015)

    Article  Google Scholar 

  24. Liang, J.; Ren, L.; Yun, M.; Wang, X.: Wideband slow light with ultralow dispersion in a w1 photonic crystal waveguide. Appl. Opt. 50, G98–G103 (2011)

    Article  Google Scholar 

  25. Fakharzadeh, M.; Ramahi, O.M.; Safavi, N.S.; Chaudhuri, S.K.: Design and analysis of ultra-miniaturized meandering photonic crystals delay lines. IEEE Trans. Adv. Packag. 31, 311–319 (2008)

    Article  Google Scholar 

  26. Lehoucq, R.; Maschhoff, K.; Sorensen D.; Yang C.: FDTD Solutions Reference Guide (2013)

  27. https://www.lumerical.com/company/news/literature/citation_instructions.html

  28. Balanis, C.A.: Advanced Engineering Electromagnetics. Wiley, Hoboken (2012)

    Google Scholar 

  29. Kim, D.Y.; Lawrence, B.L.; Torruellas, W.E.; Stegeman, G.I.; Baker, G.; Meth, J.: Assessment of single crystal ptoluene sulfonate as an alloptical switching material at 1.3 \(\upmu \)m assessment of single crystal \(p\)-toluene sulfonate as an all-optical switching material at 1.3 \(\upmu \)m. Appl. Phys. Lett. 65, 1742–1744 (1994)

    Article  Google Scholar 

  30. Boyd, R.W.: Nonlinear Optics, 3rd edn. Academic Press, Burlington (2008)

    Google Scholar 

  31. Soljacic, M.; Johnson, S.G.; Fan, S.; Ibanescu, M.; Ippen, E.; Joannopoulos, J.D.: Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B 19, 2052–2059 (2002)

    Article  Google Scholar 

  32. Khurgin, J.B.: Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. J. Opt. Soc. Am. B 22, 1062–1074 (2005)

    Article  Google Scholar 

  33. Brenger, J.P.: Perfectly matched layer (pml) for computational electromagnetics. Synth. Lect. Comput. Electromagn. 2, 1–117 (2007)

    Article  Google Scholar 

  34. Gedney, S.D.; Zhao, B.: Auxiliary differential equation formulation for the complex-frequency shifted pml. IEEE. Trans. Antennas Propag. 58, 838–847 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Funding was provided by Isfahan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Taheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, M., Omoomi, M. & Mazloum, J. Slow Light Propagation in Photonic Crystal-Based Meandering Delay Lines Using the PTS Material. Arab J Sci Eng 44, 2335–2343 (2019). https://doi.org/10.1007/s13369-018-3440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3440-7

Keywords

Navigation