Skip to main content
Log in

An Asymptotically Stable Control Scheme for Space Robot System

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this manuscript, an asymptotically stable control scheme is designed for space robot system. The space robot systems are highly uncertain systems and face structured/unstructured uncertainties, unbounded disturbances and unpredictable environment interference. The inability of model-based control schemes for such uncertain systems is improved by combining with neural network-based model-free scheme together with an adaptive bound. The proposed controller achieves the desired trajectory tracking adequately. The unknown dynamics of the system is approximated with RBF neural network without the requirement of offline learning. To recompense the effect of approximation error and unknown bound on uncertainties, the adaptive bound part of the controller is utilized. In the proposed approach, we do not need joint acceleration measurements. The Lyapunov function approach is utilized to show that the proposed controller is stable and the errors are asymptotically convergent. Finally, the numerical simulation studies are performed to validate the proposed approach and the effectiveness is shown in a comparative manner with various existing controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flores-Abad, A.; Ma, O.; Pham, K.; Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014)

    Article  Google Scholar 

  2. Papadopoulos, E.; Dubowsky, S.: On the nature of control algorithms for free-floating space manipulators. IEEE Trans. Robot. Autom. 7, 750–758 (1991)

    Article  Google Scholar 

  3. Xu, Y.; Shum, H.; Kanade, T.; Lee, J.: Parameterization and adaptive control of space robot systems. IEEE Trans. Aerosp. Electron. Syst. 30, 435–451 (1994)

    Article  Google Scholar 

  4. Ma, B.; Huo, W.: Adaptive control of space robot system with an attitude controlled base. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1265–1270 (1995)

  5. Woerkom, P.; Guelman, M.; Ehrenwald, L.: Integrated adaptive control for space manipulators. Acta Astronaut. 38(3), 161–174 (1996)

    Article  Google Scholar 

  6. Chen, L: Adaptive and robust composite control of coordinated motion of space robot system with prismatic joint. In: Proceedings of the 4th World Congress on Intelligent Control and Automation, pp. 1255–1259 (2002)

  7. Taira, Y.; Sagara, S.: A design of digital adaptive control systems for space robot manipulators using a transpose of the generalized jacobian matrix. Artif. Life Robot. 9, 41–45 (2005)

    Article  Google Scholar 

  8. Wang, H.; Xie, Y.: Passivity based adaptive jacobian tracking for free-floating space manipulators without using spacecraft acceleration. Automatica 45, 1510–1517 (2009)

    Article  MathSciNet  Google Scholar 

  9. Ulrich, S.; Sasiadek, J.Z.: Modified simple adaptive control for a two-link space robot. In: Proceedings of the American Control Conference, pp. 3654–3659 (2010)

  10. Xu, W.; Meng, D.; Chen, Y.; Qian, H.; Xu, Y.: Dynamics modeling and analysis of a flexible-base space robot for capturing large flexible spacecraft. Multibody Syst. Dyn. 32, 357–401 (2014)

    Article  MathSciNet  Google Scholar 

  11. Jia, Y.H.; Hu, Q.; Xu, S.J.: Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters. Acta Mech. Sin. 30(1), 112–124 (2014)

    Article  MathSciNet  Google Scholar 

  12. Xu, W.; Peng, J.; Liang, B.; Mu, Z.: Hybrid modeling and analysis method for dynamic coupling of space robots. IEEE Trans. Aerosp. Electron. Syst. 52(1), 85–98 (2016)

    Article  Google Scholar 

  13. Jayakody, H.S.; Shi, L.; Katupitiya, J.; Kinkaid, N.: Robust adaptive coordination controller for a spacecraft equipped with a robotic manipulator. J. Guid. Control Dyn. 39(2), 2699–2711 (2016)

    Article  Google Scholar 

  14. Yinghong, J.; Shijie, X.: Decentralized adaptive sliding mode control of a space robot actuated by control moment gyroscopes. Chin. J. Aeronaut. 29(3), 688–703 (2016)

    Article  Google Scholar 

  15. Lewis, F.; Jagannathan, S.; Yesildirek, A.: Neural Network Control of Robot Manipulators and Nonlinear Systems. Taylor and Francis, Philadelphia (1999)

    Google Scholar 

  16. Wai, R.: Tracking control based on neural network strategy for robot manipulator. Neurocomputing 51, 425–445 (2003)

    Article  Google Scholar 

  17. Kumar, N.; Panwar, V.; Sukavanam, N.; Sharma, S.P.; Borm, J.: Neural network-based nonlinear tracking control of kinematically redundant robot manipulators. Math. Comput. Model. 53, 1889–1901 (2011)

    Article  Google Scholar 

  18. Panwar, V.; Kumar, N.; Sukavanam, N.; Borm, J.: Adaptive neural controller for cooperative multiple robot manipulator system manipulating a single rigid object. Appl. Soft Comput. 12, 216–227 (2012)

    Article  Google Scholar 

  19. El-Araby, E.A.G.; El-Bardini, M.A.; El-Rabaie, N.M.: Decentralized single-neuron-based distributed controller for vibration equalization in an elastic coupled multi-motor system. Arab. J. Sci. Eng. 42(7), 2885–2897 (2017)

    Article  MathSciNet  Google Scholar 

  20. Wilson, E.; Rock, S.M.: Reconfigurable control of a free-flying space robot using neural networks. In: Proceedings of American Control Conference, pp. 1355–1359 (1995)

  21. Wang, C.; Feng, B.; Ma, G.; Ma, C.: Robust tracking control of space robots using fuzzy neural network. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 181–185 (2005)

  22. Pazelli, T.A.; Terra, M.H.; Siqueira, A.G.: Adaptive nonlinear \(h_\infty \) controllers applied to a free-floating space manipulator. In: Proceedings of IEEE International Conference on Control Applications, pp. 1476–1481 (2006)

  23. Guo, Y.; Chen, L.: Adaptive neural network control of coordinated motion of dual-arm space robot system with uncertain parameters. In: Proceedings of 7th World Congress on Intelligent Control and Automation, pp. 4842–4846 (2008)

  24. Zou, A.M.; Kumar, K.D.: Adaptive attitude control of spacecraft without velocity measurements using Chebyshev neural network. Acta Astronaut. 66(5–6), 769–779 (2010)

    Article  Google Scholar 

  25. Kumar, N.; Panwar, V.; Borm, J.; Chai, J.; Yoon, J.: Adaptive neural controller for space robot system with an attitude controlled base. Neural Comput. Appl. 23(7), 2333–2340 (2013)

    Article  Google Scholar 

  26. Li, Q.; Fucai, L.; Lihuan, L.; Jingfang, G.: Fuzzy adaptive robust control for space robot considering the effect of the gravity. Chin. J. Aeronaut. 27(6), 1562–1570 (2014)

    Article  Google Scholar 

  27. Kumar, N.; Panwar, V.: Intelligent control of space robot system using RBF neural network. In: Proceedings of the 5th International Conference on Control, Automation and Systems, pp. 167–172 (2015)

  28. Park, J.; Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3, 246–257 (1991)

    Article  Google Scholar 

  29. Slotine, J.; Weiping, L.: Applied Nonlinear Control. Prentice Hall, Upper Saddle River (1991)

    MATH  Google Scholar 

  30. Kwan, C.; Dawson, D.; Lewis, F: Robust adaptive control of robots using neural network: global tracking stability. In: Proceedings of the 34th Conference on Decision and Control, pp. 1846–1851 (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N. An Asymptotically Stable Control Scheme for Space Robot System. Arab J Sci Eng 43, 8049–8055 (2018). https://doi.org/10.1007/s13369-018-3295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3295-y

Keywords

Navigation