Skip to main content
Log in

Adaptive trajectory tracking neural network control with robust compensator for robot manipulators

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents an adaptive trajectory tracking neural network control using radial basis function (RBF) for an n-link robot manipulator with robust compensator to achieve the high-precision position tracking. One of the difficulties in designing a suitable control scheme which can achieve accurate trajectory tracking and good control performance is to guarantee the stability and robustness of control system, due to friction forces, external disturbances error, and parameter variations. To deal with this problem, the RBF network is investigated to the joint position control of an n-link robot manipulator. The RBF network is one approach which has shown a great promise in this sort of problems because of its fast learning algorithm and better approximation capabilities. The adaptive RBF network can effectively improve the control performance against large uncertainty of the system. The adaptive turning laws of network parameters are derived using the back-propagation algorithm and the Lyapunov stability theorem, so that the stability of the entire system and the convergence of the weight adaptation are guaranteed. In this control scheme, a robust compensator plays as an auxiliary controller to guarantee the stability and robustness under various environments such as the mass variation, the external disturbances, and modeling uncertainties. Finally, the simulation and experimental results in comparison with adaptive fuzzy and wavelet network control method are provided to verify the effectiveness of the proposed control methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun FC, Sun ZQ, Feng G (1999) An adaptive fuzzy controller based on sliding mode for robot manipulators. IEEE Trans Syst Man Cybern B 29(5):661–667

    Article  Google Scholar 

  2. Zou Yi, Wang Yaonan, Liu XinZhi (2010) Neural network robust H tracking control strategy for robot manipulators. Appl Math Model 34(7):1823–1838

    Article  MathSciNet  Google Scholar 

  3. Topalov V, Cascella GL, Giordano V, Cupertino F, Kaynak O (2007) Sliding mode neural-adaptive control for electrical drives. IEEE Trans Ind Electron 54(1):671–679

    Article  Google Scholar 

  4. Omatu S, Khalid M, Yusof R (1996) Neuro-control and its applications: advances in industrial control. Springer, Berlin

    Book  Google Scholar 

  5. Wang FF, Zhu SQ, Liu SG (2009) Robust adaptive wavelet network control for robot manipulators. IEEE Glob Congr Intell Syst 2:313–317

    Google Scholar 

  6. Lee CH, Theng CC (2000) Identification and control of dynamic systems using recurrent fuzzy neural network. IEEE Trans Fuzzy Syst 8(4):349–366

    Article  Google Scholar 

  7. Alavandar S, Nigam MJ (2008) Neuro-fuzzy based approach for inverse kinematics solution of industrial robot manipulators. Int J Comput Commun 3(3):224–234

    Article  MathSciNet  Google Scholar 

  8. Li ZJ, Chen WD (2008) Adaptive neural-fuzzy control of uncertain constrained multiple coordinated nonholomic mobile manipulators. Eng Appl Artif Intell 21(7):985–1000

    Article  Google Scholar 

  9. Ge SS, Hang CC, Woon LC (1997) Adaptive neural network control of robot manipulator in task space. IEEE Trans Ind Electron 44(6):746–752

    Article  Google Scholar 

  10. Lewis FL, Dowson DM, Abdallah CT (2004) Robot manipulator control theory and practice. Marcel Dekker, New York

    Google Scholar 

  11. Ngo T, Wang Y, Mai TL, Nguyen MH, Chen J (2012) Robust adaptive neural-fuzzy network tracking control for robot manipulator. Int J Control 7(2):341–352

    Google Scholar 

  12. Wai RJ, Chen PC (2006) Robust neural-fuzzy-network control for robot manipulator including actuator dynamics. IEEE Trans Ind Electron 53(4):1328–1349

    Article  Google Scholar 

  13. Luo J, Li ZJ, Ming A, Ge SS (2006) Robust motion/force control of nonholonomic mobile manipulators using hybrid joints. IEEE Intell Control Autom. doi:10.1109/WCICA.2006.1712348

    Google Scholar 

  14. Song Z, Yi J, Zhao D, Li X (2005) A computed torque controller for uncertain robotic manipulator systems: fuzzy approach. Fuzzy Sets Syst 154:208–226

    Article  MATH  MathSciNet  Google Scholar 

  15. Juang CF (2002) A TSK-type recurrent fuzzy network for dynamic system processing by neural network and genetic algorithm. IEEE Trans Fuzzy Syst 10(2):155–170

    Article  MathSciNet  Google Scholar 

  16. Li ZJ, Yang CG, Tang Y (2012) Decentralised adaptive fuzzy control of coordinated multiple mobile manipulators interacting with non-rigid environments. IET Control Theory Appl 7(3):397–410

    Article  MathSciNet  Google Scholar 

  17. He W, Ge SS, How BE, Choo YS (2014) Dynamics and control of mechanical systems in offshore engineering. Springer, London

    Book  Google Scholar 

  18. Chen FC, Khail HK (1992) Adaptive control of nonlinear systems using neural networks. Int J Control 55(6):1299–1317

    Article  MATH  Google Scholar 

  19. Yang CG, Li ZJ, Cui RX, Xu BG (2014) Neural network based motion control of under-actuated wheeled inverted pendulum models. IEEE Trans Neural Netw Learn Syst 25(11):2004–2016

    Article  Google Scholar 

  20. Yang CG, Li ZJ, Li J (2013) Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models. IEEE Trans Cybern 43(1):24–36

    Article  Google Scholar 

  21. Choi YK, Lee MJ, Kim S, Kay YC (2001) Design and implementation of an adaptive neural-network compensator for control system. IEEE Trans Ind Electron 48(2):416–423

    Article  Google Scholar 

  22. Polycarpou MM (1996) Stable adaptive neural control scheme for nonlinear systems. IEEE Trans Autom Control 41(3):447–451

    Article  MATH  MathSciNet  Google Scholar 

  23. Rovithakis GA, Christodoulou MA (1994) Adaptive control of unknown plants using dynamical neural networks. IEEE Trans Syst Man Cybern 24(3):400–412

  24. He W, Ge SS, Li Y, Chew E, Ng YS (2014) Neural network control of a rehabilitation robot by state and output feedback. J Intell Robot Syst. doi:10.1007/s10846-014-0150-6

    Google Scholar 

  25. Li ZJ, Su CY (2013) Neural-adaptive control of single-master multiple slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainty. IEEE Trans Neural Netw Learn Syst 24(9):1400–1413

    Article  Google Scholar 

  26. Li Z, Yang C, Gu J (2007) Neuro-adaptive compliant force/motion control for uncertain constrained wheeled mobile manipulator. Int J Robot Autom 22(3):206–214

    Google Scholar 

  27. Kim YH, Lewis FL (1999) Neural network output feedback control of robot manipulators. IEEE Trans Robot Autom 15(2):301–309

    Article  Google Scholar 

  28. Zhao Z, He W, Ge SS (2014) Adaptive neural network control for a fully actuated marine surface vessel with multiple output constraints. IEEE Trans Control Syst Technol 22(4):1536–1543

    Article  Google Scholar 

  29. Li ZJ, Li JX, Kang Y (2010) Adaptive Robust coordinated control of multiple mobile manipulators interacting with rigid environments. Automatica 46:2028–2034

    Article  MATH  MathSciNet  Google Scholar 

  30. Xu B, Yang CG, Shi ZK (2014) Reinforcement learning output feedback NN control using deterministic learning techniques. IEEE Trans Neural Netw Learn Syst 25(3):635–641

    Article  Google Scholar 

  31. Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan College Publishing Company, New York

    MATH  Google Scholar 

  32. Zheng Rong Yang (2006) A novel radial basis function neural network for discriminant analysis. IEEE Trans Neural Networks 17(3):604–612

    Article  Google Scholar 

  33. Li Y, Qiang S, Zhuang X, Kaynak O (2004) Robust and adaptive back-stepping control for nonlinear systems using RBF neural networks. IEEE Trans Neural Networks 15(3):693–701

    Article  Google Scholar 

  34. Patino HD, Liu D (2000) Neural network-based model reference adaptive control system. IEEE Trans Syst Man Cybern B 30(1):198–204

    Article  Google Scholar 

  35. Tai NT, Ahn KK (2010) A RBF neural network sliding mode controller for SMA actuator. Int J Control Autom Syst 6(6):1296–1305

    Article  Google Scholar 

  36. Zhihong M, Wu HR, Palaniswami M (1998) An adaptive tracking controller using neural networks for a class of nonlinear systems. IEEE Trans Neural Networks 9(5):947–955

    Article  Google Scholar 

  37. Seshagiri S, Khail HK (2000) Output feedback control of nonlinear systems using RBF neural networks. IEEE Trans Neural Networks 11(1):69–79

    Article  Google Scholar 

  38. Veluvolu KC, Soh YC (2009) High-gain observers with sliding mode for state and unknown input estimation. IEEE Trans Ind Electron 56(9):3386–3393

    Article  Google Scholar 

  39. Cao JB, Cao BG (2009) Neural network sliding mode control based on online identification for electric vehicle with ultracapacitor-battery hybrid power. Int J Control Autom Syst 7(3):409–418

    Article  Google Scholar 

  40. Fallaha CJ, Saad M, Kanaan HY, Al-Haddad K (2011) Sliding-mode robot control with exponential reaching law. IEEE Trans Industr Electron 58(2):600–610

    Article  Google Scholar 

  41. Park JS, Han GS, Ahn HS, Kim DH (2001) Adaptive approaches on the sliding mode control of robot manipulators. Trans Control Autom Syst Eng 3(1):15–20

    Google Scholar 

  42. Islam S, Liu PX (2011) Robust sliding mode control for robot manipulator. IEEE Trans Ind Electron 58(6):2444–2453

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 61175075) National Hightech Research and Development Projects (Grant Nos. 2012AA112312, 2012AA11004). The authors would like to thank the associate editor and the reviewers for their constructive comments, which greatly improved the quality for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Van Cuong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Cuong, P., Nan, W.Y. Adaptive trajectory tracking neural network control with robust compensator for robot manipulators. Neural Comput & Applic 27, 525–536 (2016). https://doi.org/10.1007/s00521-015-1873-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1873-4

Keywords

Navigation