Skip to main content
Log in

Experimental Investigations and Optimizations of Rheological Behavior of Drilling Fluids Using RSM and CCD for Gas Hydrate-Bearing Formation

  • Research Article - Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this research work, the effects of hydrate inhibitors on the rheological behavior of drilling fluids were thoroughly analyzed for gas hydrate-bearing formations under the ocean floor conditions. Initially, base drilling fluids were prepared using carboxy methyl cellulose, polyanionic cellulose, xanthan gum, calcium carbonate and potassium chloride. Further, three kinetic inhibitors and two thermodynamic inhibitors were added in these base drilling fluids to maintain the rheological characteristics for optimum drilling performance at low-temperature conditions. Response surface methodology in conjunction with the central composite design was utilized to evaluate and optimize the drilling fluid combinations to get the desired response in terms of apparent viscosity at different temperatures. The software analyzed the data and optimized drilling fluid combinations for gas hydrate formation in offshore conditions. The optimized drilling fluids have shown desired results which may be used for the drilling of gas hydrate-bearing formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RSM:

Response surface methodology

CCD:

Central composite design

DF-1:

Drilling fluid with thermodynamic inhibitor

DF-2:

Drilling fluid with kinetic inhibitor

wt%:

Weight percentage

PVP (K-15):

Polyvinylpyrrolidone (K-15)

PVCap:

N-Vinyl-\(\upvarepsilon \)-caprolactam

VC 713:

2-(Dimethylamino) ethyl methacrylate

LV:

Low viscosity

C[1]:

VC 713

C[2]:

PVP (K-15)

References

  1. Makogon, Y.F.; Holditch, S.A.; Makogon, T.Y.: Natural gas-hydrates—a potential energy source for the 21st century. J. Petrol. Sci. Eng. 56, 14–31 (2007)

    Article  Google Scholar 

  2. Kelland, M.A.: Production Chemicals for the Oil and Gas Industry, vol. XVII. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  3. Sloan, E.D.; Koh, C.A.: Clathrate Hydrates of Natural Gases, vol. XXV. CRC Press, Boca Raton, FL (2007)

    Book  Google Scholar 

  4. Saw, V.K.; Gudala, M.; Udayabhanu, G.; Mandal, A.; Laik, S.: Kinetics of methane hydrate formation and its dissociation in presence of non-ionic surfactant Tergitol. J. Unconv. Oil Gas Resour. 6, 54–59 (2014)

    Article  Google Scholar 

  5. Dalmazzone, B.; Herzhaft, B.; Rousseau, L.; Le, P.P.: Prediction of Gas Hydrate Formation with DSC Technique. SPE ATCE, Denver, CO (2003)

    Book  Google Scholar 

  6. Saw, V.K.; Gudala, M.; Udayabhanu, G.; Mandal, A.; Laik, S.: Methane hydrate formation and dissociation in synthetic seawater. J. Nat. Gas Chem. 21, 625–632 (2012)

    Article  Google Scholar 

  7. Kvenvolden, K.A.: Gas hydrates—geological perspective and global change. Rev. Geophys. 31, 173 (1993)

    Article  Google Scholar 

  8. Ruppel, C.: Thermal state of the gas hydrate reservoir. In: Max, M.D. (ed.) Natural Gas Hydrate in Oceanic and Permafrost Environments, pp. 29–42. Kluwer Academic Publications, Dordrecht (2000)

    Google Scholar 

  9. Birchwood, R.A., Noeth, S., Tjengdrawira, M.A., Kisra, S.M., Elisabeth, F.L., Sayers, C.M., et al.: Modeling the mechanical and phase change stability of wellbores drilled in gas hydrates. Technical Report for Joint Industry Participation Program (JIPP) Gas Hydrates Project, Phase II: Anaheim, CA, USA (2007)

  10. Yonghong, S.; Xiaoshu, L.; Wei, G.: A review on simulation models for exploration and exploitation of natural gas hydrate. Arab. J Geosci. 7, 2199–2214 (2014)

    Article  Google Scholar 

  11. Liu, T.; Jiang, G.; Ning, F.; Zhang, L.; Tu, Y.: Inhibition of polyethylene glycol drilling fluid with kinetic inhibitor for marine gas hydrates formation. Geol. Sci. Tech. Inf. 29, 116–120 (2010)

    Google Scholar 

  12. Kelland, M.A.: History of the development of low dosage hydrate inhibitors. Energy Fuels 20, 825–847 (2006)

    Article  Google Scholar 

  13. Fan, S.S.; Zhang, Y.Z.; Tian, G.L.; Liang, D.Q.; Li, D.L.: Natural gas hydrate dissociation by presence of ethylene glycol. Energy Fuels 20, 324–326 (2006)

    Article  Google Scholar 

  14. Dick, M.A., Heinz, T.J., Svoboda, C.F., Aston, M.: Optimizing the selection of bridging particles for reservoir drilling fluids. In: SPE International Symposium, 23–24 February 2000, Lafayette, Louisiana (2000)

  15. Shuli, D., Jienina, Y.: Optimization of drilling fluid rheology model using least square fitting method. Petroleum Drilling Techniques. http://en.cnki.com.cn (2000)

  16. Menezes, R.R.; Brasileiro, M.I.; Gonçalves, W.P.; Santana, L.N.L.; Neves, G.A.; Ferreira, H.S.; Ferreira, H.C.: Statistical design for recycling kaolin processing waste in the manufacturing of mullite-based ceramics. Mater. Res. 12(2), 201–209 (2009)

    Article  Google Scholar 

  17. Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley Interscience, New York (2001)

    Google Scholar 

  18. Menezes, R.R.; Marques, L.N.; Campos, L.A.; Ferreira, H.S.; Santana, L.N.L.; Neves, G.A.: Use of statistical design to study the influence of CMC on the rheological properties of bentonite dispersions for water-based drilling fluids. Appl. Clay Sci. 49, 13–20 (2010)

    Article  Google Scholar 

  19. Box, G.E.P.; Draper, N.R.: Empirical Model Building and Response Surfaces. Wiley, New York, NY (1987)

    MATH  Google Scholar 

  20. Venter, G.; Haftka, R.T.; Starnes Jr., J.H.: Construction of response surfaces for design optimization applications. In: 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Bellevue, WA, AIAA Inc, vol. 1, pp. 548–564 (1996)

  21. Montgomery, D.C.: Design and Analysis of Experiments, 4th edn. Wiley, New York (1997)

    MATH  Google Scholar 

  22. Eschenauer, H.A.; Lautenschlager, U.; Mistree, F.: Multiobjective flywheel design: a DOE-based concept exploration task. In: Proceedings ASME Design. Engineering technical conferences, Sacramento, California, pp. 1–12 (1997)

  23. Wu, S.; Zhang, G.; Huang, Y.; Liang, J.; Wong, H.K.: Gas hydrate occurrence on the continental slope of the northern South China Sea. Mar. Pet. Geol. 22, 403–412 (2005)

    Article  Google Scholar 

  24. Lin, G.; Hu, T.; Peng, J.; et al.: Optimization of experiments for microwave drying of hydrometallurgy mud using response surface methodology. Arab. J. Sci. Eng. 41(2), 569–576 (2016)

    Article  Google Scholar 

  25. Aïda, A.; Mabrouk, E.; Nejib, K.; Mourad, B.: Application of Tunisian limestone material for chlorobenzene adsorption: characterization and experimental design. Arab. J. Geosci. 8, 11183–11192 (2015)

    Article  Google Scholar 

  26. Chen, X.; Du, W.; Liu, D.: Response surface optimization from biocatalytic biodiesel production with acid oil. Biochem. Eng. J. 40, 423–429 (2008)

    Article  Google Scholar 

  27. Arun, P.; Pudi, S.M.; Biswas, P.: Acetylation of glycerol over sulphated alumina: reaction parameter study and optimization using response surface methodology (RSM). Energy Fuels 30(1), 584–593 (2015). https://doi.org/10.1021/acs.energyfuels.5b01901

    Article  Google Scholar 

  28. Noordin, M.Y.; Venkatesh, V.C.; Sharif, S.; Elting, S.; Abdullah, A.: Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J. Mater. Process. Technol. 145, 46–58 (2004)

    Article  Google Scholar 

  29. Matlob, A.S.; Kamarudin, R.A.; Jubri, Z.; Ramli, Z.: Response surface methodology for optimizing zeolite Na-A synthesis. Arab. J. Sci. Eng. 38(7), 1713–1720 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Mahto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikia, T., Mahto, V. Experimental Investigations and Optimizations of Rheological Behavior of Drilling Fluids Using RSM and CCD for Gas Hydrate-Bearing Formation. Arab J Sci Eng 43, 6541–6554 (2018). https://doi.org/10.1007/s13369-018-3292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3292-1

Keywords

Navigation