Skip to main content

Advertisement

Log in

Rheological studies and optimization of Herschel–Bulkley parameters of an environmentally friendly drilling fluid using genetic algorithm

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The Herschel–Bulkley rheological parameters of an environmentally friendly drilling fluid formulated based on an Algerian bentonite and two polymers—hydroxyethyl cellulose and polyethylene glycol—have been optimized using a genetic algorithm. The effect of hydroxyethyl cellulose, temperature, pH and sodium chloride (NaCl) on the three-parameter Herschel-Bulkley model was also studied. The genetic algorithm technique provided improved rheological parameter characterization compared to the nonlinear regression, especially in the case of drilling fluids formulated with sodium chloride making it a better choice. Furthermore, the oscillatory test offered more reliable yield stress values. The rheological parameters were found to be very sensitive to different conditions. Yield stress and consistency index increased with increasing the hydroxyethyl cellulose concentration, reaching maximum at a temperature of 65 °C and decreased with decreasing pH and also when adding sodium chloride to the drilling fluid. The flow index changed inversely to yield stress and consistency index. The physical origins of these changes in rheological parameters were discussed and correlation between variation in rheological parameters and bentonite suspension properties were concluded. Based on these results, it is recommended to use the proposed formulation of drilling fluid at high temperature and when the formation of alkaline pH is encountered due to the gelation mechanism and to select the optimum concentration of NaCl to avoid degradation of the rheological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CMC:

carboxymethyl cellulose

EE:

edge-to-edge

FF:

face-to-face

GA:

genetic algorithm

HEC:

hydroxyethyl cellulose

H–B:

Herschel–Bulkley

NL:

nonlinear regression

PEG:

polyethylene glycol

PL:

power law

PSO:

particle swarm optimization

S1–S18:

sample 1–18

XRF:

X-ray fluorescence

k :

consistency index (Pa.sn)

N :

number of data points

n :

flow index

R 2 :

correlation coefficient

SSE:

sum of square errors (Pa2)

T:

temperature (°C)

\( \dot{\gamma} \) :

shear rate (s−1)

τ :

shear stress (Pa)

τ c :

yield stress (Pa)

τ i :

measured shear stress (Pa)

\( {\widehat{\tau}}_i \) :

predicted shear stress

\( {\overline{\widehat{\tau}}}_a \) :

mean predicted shear stress

References

  • Abraham TN, Ratna D, Siengchin S, Karger-Kocsis J (2008) Rheological and thermal properties of poly(ethylene oxide)/multiwall carbon nanotube composites. J Appl Polym Sci 110:2094–2101

    Article  CAS  Google Scholar 

  • Abu-Jdayil B (2011) Rheology of sodium and calcium bentonite – water dispersions: effect of electrolytes and aging time. Int J Miner Process 98:208–213

    Article  CAS  Google Scholar 

  • Alderman NJ, Gavignet A, Guillot D, Maitlan GC (1988) High-temperature, high-pressure rheology of water-based muds. Paper SPE 18035 presented at the SPE Annual Technical Conference and Exhibition, Houston, 2–5 October. 187–195

  • Al-Marhoun MA, Rahman SS (1988) Optimizing the properties of water-based polymer drilling fluids for penetrating formations with electrolyte influx. Erdol Erdgas J 318–323

  • Amani M, Retnanto A, Yrac R, Shehada S, Ghamary MH, Khorasani MHM, Abu Ghazaleh M (2015) Effect of salinity on the viscosity of water based drilling fluids at elevated pressures and temperatures. International Journal of Engineering and Applied Sciences 7(04):30–52

    Google Scholar 

  • Annis MR (1967) High-temperature flow properties of water-base drilling fluids. J Pet Technol 19:1074–1080

    Article  Google Scholar 

  • Anyanwu C, Mustapha Unubi M (2016) Experimental evaluation of particle sizing in drilling fluid to minimize filtrate losses and formation damage. SPE-184303-MS, presented at SPE Nigiria international conference and exhibition held in Lagos

  • Arisz PWF, Lusvardi KM (2006) Water-soluble, low substitution hydroxyethyl cellulose, derivatives thereof, process of making, and uses thereof. US patent 0199742:A1

    Google Scholar 

  • Au PI, Leong YK (2016) Surface chemistry and rheology of slurries of kaolinite and montmorillonite from different sources. KONA powder particle J 33:17–32

    Article  CAS  Google Scholar 

  • Avadiar L, Leong Y, Fourie A, Nugraha T, Clode PL (2014) Source of Unimin kaolin rheological variation-Ca2+ concentration. Colloids Surfaces A: Physicochem Eng Aspects 459:90–99

    Article  CAS  Google Scholar 

  • Bahlouli MI, Bekkour K, Benchabane A, Hemar Y, Nemdili A (2013) The effect of temperature on the rheological behavior of polyethylene oxide (PEO) solutions. Appl Rheol 23:13435

    Google Scholar 

  • Benslimane A, Bahlouli IM, Bekkour K, Hammiche D (2016) Thermal gelation properties of carboxymethyl cellulose and bentonite-carboxymethyl cellulose dispersions: rheological considerations. Appl Clay Sci 132–133:702–710

    Article  Google Scholar 

  • Bourgoyne AT, Millheim KK, Chenevert ME, Young FS (1991) Applied drilling engineering, First edn. Society of Petroleum Engineers, Richardson

  • Briscoe BJ, Luckam PF, Ren SR (1994) The properties of drilling muds at high pressures and high temperatures. Philos Trans R Soc Lond Ser A: Math Phys Sci 348:179–207

    Article  CAS  Google Scholar 

  • Caenn R, Chillingar GV (1996) Drilling fluids: state of the art. J Pet Sci Eng 14:221–230

    Article  CAS  Google Scholar 

  • Callaghan IC, Ottewill RH (1974) Interparticle forces in montmorilonite gels. Discuss Faraday Soc 57:110–118

    Article  CAS  Google Scholar 

  • Chang W-Z, Leong Y-K (2014) Ageing and collapse of bentonite gels—effects of Li, Na, K and Cs ions. Rheol Acta 53:109–122

    Article  CAS  Google Scholar 

  • Chauhan G, Verma A, Das A, Ojha K (2018) Rheological studies and optimization of Herschel-Bulkley flow parameters of viscous karaya polymer suspensions using GA and PSO algorithms. Rheol Acta 57:267–285. https://doi.org/10.1007/s00397-017-1060-x

    Article  CAS  Google Scholar 

  • Chauduri A, Wereley N, Radhakrishnan R, Choi SB (2006) Rheological parameter estimation for a ferrous nano-particle-based magneto rheological fluid using genetic algorithms. J Intell Mater Syst Struct 17:261–269

    Article  Google Scholar 

  • Chauduri A, Wereley N, Kotha S, Radhakrishnan R, Sudarshan TS (2005) Viscometric characterization of cobalt nano-particle-based magneto rheological fluids using genetic algorithms. J Magn Magn Mater 293:206–214

    Article  Google Scholar 

  • Cole RC, Ali SA, Foley KA (1995) A new environmentally safe crosslinked polymer for fluid-loss control. Paper SPE 29525 presented at the SPE production operations symposium, Oklahoma City

  • de Kretser RG, Scales PJ, Boger DV (1998) Surface chemistry– rheology inter-relationships in clay suspensions. Colloids Surf A Physicochem Eng Asp 137:307–318

    Article  Google Scholar 

  • Dinkgreve M, Paredes J, Denn MM, Bonn D (2016) On different ways of measuring the yield stress. J Non-Newtonian Fluid Mech 238:233–241

    Article  CAS  Google Scholar 

  • Duran JDG, Ramos-Tejada MM, Arroyo FJ, Gonzalez-Caballero F (2000) Rheological and electrokinetic properties of sodium montmorillonite suspensions. J Colloid Interface Sci 229:197–117

    Article  Google Scholar 

  • Fan J, Zhu H, Li R, Chen N (2014) Montmorillonite modified by cationic and nonionic surfactants as high-performance fluid-loss-control additive in oil-based drilling fluids. J Dispers Sci Technol 36:569–576

    Article  Google Scholar 

  • Fordham EJ, Bittleston SH, Tehrani MA (1991) Viscoplastic flow in centered annuli, pipes and slots. Ind Eng Chem Res 29:517–524

    Article  Google Scholar 

  • Gareche M, Allal A, Zeraibi N, Roby F, Azril N, Saoudi L (2016) Relationship between the fractal structure with the shear complex modulus of montmorillonite supensions. Appl Clay Sci 123:11–17

    Article  CAS  Google Scholar 

  • Gentile L, De Luca G, Antunes FE, Rossi CO, Ranieri GA (2010) Thermogelation analysis of F127-water mixtures by physical chemistry techniques. Appl Rheol 20(1–9):52081

    Google Scholar 

  • Goldberg D (1989) Genetic algorithms in search optimization and ma-chine learning. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Glass Jr, JE (1985) HEC-bentonite compatible blends. US patent, 4561985

  • Graef VD, Depypere F, Minnaert M, Dewettinck (2011) Chocolate yield stress as measured by oscillatory rheology. Food Res Int 44(9):2660–2665

    Article  Google Scholar 

  • Hao S-Q (2011) A study to optimize drilling fluids to improve borehole stability in natural gas hydrate frozen ground. J Pet Sci Eng 76:109–115

    Article  CAS  Google Scholar 

  • Hemphil T, Campos W, Pilehvari A (1993) Yield-power law model accurately predicts mud rheology. Oil Gas J 91:45–50

    Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Jiang G, Liu T, Ning F, Tu Y, Zhang L, Yu Y, Kuang L (2011) Polyethylene glycol drilling fluid for drilling in marine gas hydrates-bearing sediments: an experimental study. Energies 4:140–150

    Article  CAS  Google Scholar 

  • Jung Y, Son Y-H, Lee J-K, Phuoc TX, Soong Y, Chyu MK (2011) Rheological behavior of clay− nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids. ACS Appl Mater Interfaces 3:3515–3522

    Article  CAS  Google Scholar 

  • Juppe HL, Marchant RP, Melbouci M (2003) Environmentally acceptable fluid polymer suspension for oil field services. US patent 6620769:B1

    Google Scholar 

  • Kelessidis VC, Maglione R (2006) Modeling rheological behavior of bentonite suspensions as Casson and Robertson–Stiff fluids using Newtonian and true shear rates in Couette viscometry. Powder Technol 168:134–147

    Article  CAS  Google Scholar 

  • Kelessidis VC, Tsamantaki C, Dalamarinis P (2007) Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions. Appl Clay Sci 38:86–96

    Article  CAS  Google Scholar 

  • Kenny P, Hemphill T, Bell G (1994) unique hole cleaning capabilities of ester-based drilling fluid system. Paper SPE 28308 presented at the SPE Annual Technical Conference and Exhibition, New Orleans, 25–28 September

  • Kok MV, Batmaz T, Gücüyener IH (2000) Rheological behavior of bentonite suspensions. Pet Sci Technol 18(5 & 6):519–536

    Article  CAS  Google Scholar 

  • Kok MV (2009) Statistical approach of two-three parameters rheological models for polymer type drilling fluid analysis. Energy Sources A: Recovery, Utilization and Environmental Effects 32(4):336–345

    Article  Google Scholar 

  • Kok MV (2013) Thermal analysis and rheological study of ocma type bentonite used in drilling fluids. Energy Sources A: Recovery, Utilization and Environmental Effects 35(2):122–133

    Article  CAS  Google Scholar 

  • Laribi S, Fleureua JM, Grossiord JL, Kbir-Ariguib N (2006) Effect of pH on the rheological behavior of pure and interstratified smectite clays. Clay Clay Miner 54:29–37

    Article  CAS  Google Scholar 

  • Li M, Wu Q, Song K, Qing Y, Wu Y (2015) Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Appl Mater Interfaces 7:5006–5016

    Article  CAS  Google Scholar 

  • Luckham PF, Rossi S (1999) The colloidal and rheological properties of bentonite suspensions. Adv Colloid Interf Sci 82:43–92

    Article  CAS  Google Scholar 

  • Maglione R, Ferrario G (1996) Equations determine flow states for yield-pseudoplastic drilling fluids. Oil and Gas J 63:63–65

    Google Scholar 

  • Maglione R, Romagnoli R (1998) The role of rheology optimization in the drilling mud design. GEAM Bulletin of the Polytechnic of Turin 94:123–132

    Google Scholar 

  • Malone TR, Raines RH (1979) Colorimetric field test for determining hydroxyethyl cellulose (HEC) and other polysaccharides in drilling fluids. Paper SPE 8741 presented at the Eastern Regional Meeting of the Soc. of Petroleum Eng. of AIME, Charleston. West Virginia

  • Man KF, Tang KS, Kwong S (1996) Genetic algorithms: concepts and applications. IEEE Trans Ind Electron 43:519–534

    Article  Google Scholar 

  • Melbouci M (2013) Use of polyethylene glycol based fluidized polymer suspension in functional systems. US patent 8450386:B2

    Google Scholar 

  • Michalewicz Z (1996) Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer - Verlag, New York, p 387

    Book  Google Scholar 

  • Mpofu P, Addai-Mensah J, Ralston J (2003) Influence of hydrolyzable metal ions on the interfacial chemistry, particle interactions, and dewatering behavior of kaolinite dispersions. J Colloid Interface Sci 261:349–359

    Article  CAS  Google Scholar 

  • Nguyen QD, Boger DV (1983) Yield stress measurements for concentrated suspensions. J Rheol 27:321–349

    Article  Google Scholar 

  • Norrish K (1954) The swelling of montmorillonite. Discuss Faraday Soc 18:120–134

    Article  CAS  Google Scholar 

  • Ouaer H, Gareche M (2018) The rheological behaviour of a water-soluble polymer (HEC) used in drilling fluids. J Braz Soc Mech Sci Eng 40:380. https://doi.org/10.1007/s40430-018-1301-7

    Article  CAS  Google Scholar 

  • Permien T, Lagaly G (1994a) The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds: I. Flow behaviour of sodium-bentonite in water–alcohol. Appl Clay Sci 29:751–760

    CAS  Google Scholar 

  • Raines RH (1986) Use of low M.S. (molar substitution) hydroxyethyl cellulose for fluid loss control in oil well applications. US patent 4(629):573

    Google Scholar 

  • Rooki R, Ardejani FD, Moradzadeh A, Mirzaei H, Kelessidis V, Maglione R, Norouzi M (2012) Optimal determination of rheological parameters for Herschel–Bulkley drilling fluids using genetic algorithms (GAs). Korea-Aus Rheol J 24(3):163–170

    Article  Google Scholar 

  • Song K, Wu Q, Li M, Ren S, Dong L, Zhang X, Lei T, Kojima Y (2016) Water-based bentonite drilling fluids modified by novel biopolymer for minimizing fluid loss and formation damage. Colloids Surf A Physicochem Eng Asp 507:58–66

    Article  CAS  Google Scholar 

  • Tadros TF (1996) Correlation of viscoelastic properties of stable and flocculated suspensions with their interparticle interactions. Adv Colloid Interf Sci 68:97–200

    Article  CAS  Google Scholar 

  • Temraz MG, Hassanien I (2016) Mineralogy and rheological properties of some Egyptian bentonite for drilling fluids. J Nat Gas Sci Eng 31:791–799

    Article  CAS  Google Scholar 

  • Tombácz E, Szekeres M (2004) Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Appl Clay Sci 27:75–94

    Article  Google Scholar 

  • Tunc S, Duman O (2008) The effect of different molecular weight of poly(ethylene glycol) on the electrokinetic and rheological properties of Na-bentonite suspensions. Colloids & Surfaces A: Physicochem Eng Aspects 317:93–99

    Article  CAS  Google Scholar 

  • Walker RE, Korry DE (1974) Field method of evaluating annular performance of drilling fluids. Pet Tech 26:167–173

    Article  Google Scholar 

  • William JKM, Ponmani S, Samuel R, Nagarajan R, Sangwai JS (2014) Effect of CuO and ZnO Nano fluids in xanthan gum on thermal, electrical and high pressure rheology of water-based drilling fluids. J Pet Sci Eng 117:15–27

    Article  CAS  Google Scholar 

  • Zhang L-M, Sun B-W (1999) Inhibition of water-soluble cationic cellulosic polymers to clay hydration. J Appl Polym Sci 74:3088–3093

    Article  CAS  Google Scholar 

  • Zhou Z, Scales PJ, Boger DV (2001) Chemical and physical control of the rheology of concentrated metal oxide suspensions. Chem Eng Sci 56(9):2901–2920

    Article  CAS  Google Scholar 

  • Zhu S, Avadiar L, Leong YK (2016) Yield stress- and zeta potential-pH behavior of washed α-Al2O3 suspensions with relatively high Ca(II) and Mg(II) concentrations: hydrolysis product and bridging. Int J Miner Process 148:1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to extend special thanks to Mr. Perry Mureau for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hocine Ouaer.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouaer, H., Gareche, M. & Rooki, R. Rheological studies and optimization of Herschel–Bulkley parameters of an environmentally friendly drilling fluid using genetic algorithm. Rheol Acta 57, 693–704 (2018). https://doi.org/10.1007/s00397-018-1110-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-018-1110-z

Keywords

Navigation