Skip to main content
Log in

Metallocene-Catalyzed Copolymerization of Ethylene and 1-Hexene in the Presence of Graphene/MgAl LDH Nanofiller: Effect on the Activity, SCB, and Thermal Stability

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nanofiller based on graphene and MgAl layered double hydroxides (G/LDHs) were synthesized successfully by co-precipitation method with varying graphene contents. The in situ polymerization of ethylene was conducted using 1-hexene as comonomer, zirconocene as a catalyst, MAO as co-catalyst, and G/LDHs as drop-in nanofiller. An increase in catalytic activity was recorded due to the addition of nanofiller. Furthermore, a maximum catalytic activity was observed for the nanofiller containing 100 mg of graphene. However, nanofiller containing higher amount graphene reduced the activity due to agglomeration of the graphene nanoparticles. Moreover, the degree of crystallinity decreased due to the addition of short chain branching in the copolymers. The thermal stability of the copolymers was analyzed using TGA. The effective activation energy (\(E_\mathrm{A})\) was calculated using the Friedman method. The \(E_\mathrm{A}\) profiles thus obtained have revealed that the polymer nanocomposites having 100 mg of graphene have highest thermal stability than the neat copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zou, H.; Wu, S.; Shen, J.: Polymer/silica nanocomposites: preparation, characterization, propertles, and applications. Chem. Rev. 108, 3893–3957 (2008). https://doi.org/10.1021/cr068035q

    Article  Google Scholar 

  2. Reddy, K.R.; Sin, B.C.; Ryu, K.S.; Noh, J.; Lee, Y.: In situ self-organization of carbon black-polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth. Metals 159, 1934–1939 (2009). https://doi.org/10.1016/j.synthmet.2009.06.018

    Article  Google Scholar 

  3. Thakur, V.; Kessler, M.: Polymer Nanocomposites: New Advanced Dielectric Materials for Energy Storage Applications. In: Advanced Energy Materials. pp. 207–257. Wiley Blackwell, Hoboken (2014)

    Chapter  Google Scholar 

  4. Reddy, K.R.; Park, W.; Sin, B.C.; Noh, J.; Lee, Y.: Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J. Colloid Interface Sci. 335, 34–39 (2009). https://doi.org/10.1016/j.jcis.2009.02.068

    Article  Google Scholar 

  5. Zhang, M.; Li, Y.; Su, Z.; Wei, G.: Recent advances in the synthesis and applications of graphene–polymer nanocomposites. Polym. Chem. 6, 6107–6124 (2015). https://doi.org/10.1039/C5PY00777A

    Article  Google Scholar 

  6. Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S.: Graphene-based polymer nanocomposites. Polymer (Guildf) 52, 5–25 (2011). https://doi.org/10.1016/j.polymer.2010.11.042

    Article  Google Scholar 

  7. Oshima, K.; Sadakata, S.; Asano, H.; Shiraishi, Y.; Toshima, N.: Thermostability of hybrid thermoelectric materials consisting of poly(Ni-ethenetetrathiolate), polyimide and carbon nanotubes. Materials (Basel) 10, 824 (2017). https://doi.org/10.3390/ma10070824

    Article  Google Scholar 

  8. Ambuken, P.V.; Stretz, H.A.; Koo, J.H.; Messman, J.M.; Wong, D.: Effect of addition of montmorillonite and carbon nanotubes on a thermoplastic polyurethane: high temperature thermomechanical properties. Polym. Degrad. Stab. 102, 160–169 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.01.017

    Article  Google Scholar 

  9. Ambuken, P.; Stretz, H.; Koo, J.H.; Lee, J.; Trejo, R.: High-temperature flammability and mechanical properties of thermoplastic polyurethane nanocomposites. In: Fire and Polymers VI: New Advances in Flame Retardant Chemistry and Science, pp. 343–360. (2012)

    Google Scholar 

  10. Choi, S.H.; Kim, D.H.; Raghu, A.V.; Reddy, K.R.; Lee, H.-I.; Yoon, K.S.; Jeong, H.M.; Kim, B.K.: Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J. Macromol. Sci. Part B 51, 197–207 (2012). https://doi.org/10.1080/00222348.2011.583193

    Article  Google Scholar 

  11. Khan, M.U.; Reddy, K.R.; Snguanwongchai, T.; Haque, E.; Gomes, V.G.: Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym. Sci. 294, 1599–1610 (2016). https://doi.org/10.1007/s00396-016-3922-7

    Article  Google Scholar 

  12. Hassan, M.; Reddy, K.R.; Haque, E.; Minett, A.I.; Gomes, V.G.: High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J. Colloid Interface Sci. 410, 43–51 (2013). https://doi.org/10.1016/j.jcis.2013.08.006

    Article  Google Scholar 

  13. Reddy, K.R.; Jeong, H.M.; Lee, Y.; Raghu, A.V.: Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J. Polym. Sci. Part A Polym. Chem. 48, 1477–1484 (2010). https://doi.org/10.1002/pola.23883

    Article  Google Scholar 

  14. Kim, H.; Abdala, A.A.; MacOsko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010). https://doi.org/10.1021/ma100572e

    Article  Google Scholar 

  15. Shehzad, F.; Thomas, S.P.; Al-Harthi, M.A.: Non-isothermal crystallization kinetics of high density polyethylene/graphene nanocomposites prepared by in-situ polymerization. Thermochim. Acta. 589, 226–234 (2014). https://doi.org/10.1016/j.tca.2014.05.039

    Article  Google Scholar 

  16. Son, D.R.; Raghu, A.V.; Reddy, K.R.; Jeong, H.M.: Compatibility of thermally reduced graphene with polyesters. J. Macromol. Sci. Part B 55, 1099–1110 (2016). https://doi.org/10.1080/00222348.2016.1242529

    Article  Google Scholar 

  17. Han, S.J.; Lee, H.-I.; Jeong, H.M.; Kim, B.K.; Raghu, A.V.; Reddy, K.R.: Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J. Macromol. Sci. Part B 53, 1193–1204 (2014). https://doi.org/10.1080/00222348.2013.879804

    Article  Google Scholar 

  18. Costa, F.R.; Saphiannikova, M.; Wagenknecht, U.; Heinrich, G.: Layered double hydroxide based polymer nanocomposites. Adv. Polym. Sci. 210, 101–168 (2008). https://doi.org/10.1007/12_2007_123

    Article  Google Scholar 

  19. Gao, Y.; Wu, J.; Wang, Q.; Wilkie, C.A.; O’Hare, D.: Flame retardant polymer/layered double hydroxide nanocomposites. J. Mater. Chem. A 2, 10996–11016 (2014). https://doi.org/10.1039/c4ta01030b

    Article  Google Scholar 

  20. Matusinovic, Z.; Wilkie, C.a: Fire retardancy and morphology of layered double hydroxide nanocomposites: a review. J. Mater. Chem. 22, 18701 (2012). https://doi.org/10.1039/c2jm33179a

    Article  Google Scholar 

  21. Pradhan, B.; Srivastava, S.K.; Bhowmick, A.K.; Saxena, A.: Effect of bilayered stearate ion-modified Mg–Al layered double hydroxide on the thermal and mechanical properties of silicone rubber nanocomposites. Polym. Int. 61, 458–465 (2012). https://doi.org/10.1002/pi.3218

    Article  Google Scholar 

  22. Mallakpour, S.; Dinari, M.: Hybrids of Mg–Al-layered double hydroxide and multiwalled carbon nanotube as a reinforcing filler in the l-phenylalanine-based polymer nanocomposites. J. Therm. Anal. Calorim. 119, 1905–1912 (2015). https://doi.org/10.1007/s10973-014-4270-9

    Article  Google Scholar 

  23. Cao, Y.; Li, G.; Li, X.: Graphene/layered double hydroxide nanocomposite: properties, synthesis, and applications. Chem. Eng. J. 292, 207–223 (2016). https://doi.org/10.1016/j.cej.2016.01.114

    Article  Google Scholar 

  24. Zhao, M.Q.; Zhang, Q.; Huang, J.Q.; Wei, F.: Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides—properties, synthesis, and applications. Adv. Funct. Mater. 22, 675–694 (2012). https://doi.org/10.1002/adfm.201102222

    Article  Google Scholar 

  25. Daud, M.; Kamal, M.S.; Shehzad, F.; Al-Harthi, M.A.: Graphene/layered double hydroxides nanocomposites: a review of recent progress in synthesis and applications. Carbon 104, 241–252 (2016). https://doi.org/10.1016/j.carbon.2016.03.057

    Article  Google Scholar 

  26. Yuan, B.; Bao, C.; Qian, X.; Jiang, S.; Wen, P.; Xing, W.; Song, L.; Liew, K.M.; Hu, Y.: Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind. Eng. Chem. Res. 53, 1143–1149 (2014). https://doi.org/10.1021/ie403438k

    Article  Google Scholar 

  27. Daud, M.; Shehzad, F.; Al-Harthi, M.A.: Crystallization behaviour and lamellar thickness distribution of metallocene-catalyzed polymer: effect of 1-alkene comonomer and branch length. Can. J. Chem. Eng. 95, 491–499 (2017). https://doi.org/10.1002/cjce.22711

    Article  Google Scholar 

  28. Chum, P.S.; Swogger, K.W.: Olefin polymer technologies—history and recent progress at The Dow Chemical Company. Prog. Polym. Sci. 33, 797–819 (2008). https://doi.org/10.1016/j.progpolymsci.2008.05.003

    Article  Google Scholar 

  29. Harini, S.T.; Padmavathi, S.; Satish, A.; Raj, B.: Food compatibility and degradation properties of pro-oxidant-loaded LLDPE film. J. Appl. Polym. Sci. 131, 1–8 (2014). https://doi.org/10.1002/app.39756

    Article  Google Scholar 

  30. Stürzel, M.; Kempe, F.; Thomann, Y.; Mark, S.; Enders, M.; Mülhaupt, R.: Novel graphene UHMWPE nanocomposites prepared by polymerization filling using single-site catalysts supported on functionalized graphene nanosheet dispersions. Macromolecules 45, 6878–6887 (2012). https://doi.org/10.1021/ma301376q

    Article  Google Scholar 

  31. Shehzad, F.; Daud, M.; Al-Harthi, M.A.: Synthesis, characterization and crystallization kinetics of nanocomposites prepared by in situ polymerization of ethylene and graphene. J. Therm. Anal. Calorim. 123, 1501–1511 (2016). https://doi.org/10.1007/s10973-015-5087-x

    Article  Google Scholar 

  32. Park, S.; Yoon, S.W.; Lee, K.B.; Kim, D.J.; Jung, Y.H.; Do, Y.; Paik, H.J.; Choi, I.S.: Carbon nanotubes as a ligand in Cp\(_2\)ZrCl\(_2\)-based ethylene polymerization. Macromol. Rapid Commun. 27, 47–50 (2006). https://doi.org/10.1002/marc.200500614

    Article  Google Scholar 

  33. Crepaldi, E.L.; Pavan, P.C.; Valim, J.B.: Comparative study of the coprecipitation methods for the preparation of layered double hydroxides. J. Braz. Chem. Soc. 11, 64–70 (2000). https://doi.org/10.1590/S0103-50532000000100012

    Article  Google Scholar 

  34. Daud, M.; Shehzad, F.; Al-Harthi, M.A.: Non-isothermal crystallization kinetics of LLDPE prepared by in situ polymerization in the presence of nano titania. Polym. Bull. 72, 1233–1245 (2015). https://doi.org/10.1007/s00289-015-1335-2

    Article  Google Scholar 

  35. ASTM D5017-96(2009)e1, Standard Test Method for Determination of Linear Low Density Polyethylene (LLDPE) Composition by Carbon-13 Nuclear Magnetic Resonance. ASTM Int. West Conshohocken, PA, 2003 (2009)

  36. Roy, S.; Srivastava, S.K.; Pionteck, J.; Mittal, V.: Mechanically and thermally enhanced multiwalled carbon nanotube-graphene hybrid filled thermoplastic polyurethane nanocomposites. Macromol. Mater. Eng. 300, 346–357 (2015). https://doi.org/10.1002/mame.201400291

    Article  Google Scholar 

  37. Rives, V.: Characterisation of layered double hydroxides and their decomposition products. Mater. Chem. Phys. 75, 19–25 (2002). https://doi.org/10.1016/S0254-0584(02)00024-X

    Article  Google Scholar 

  38. Roy, S.; Srivastava, S.K.; Pionteck, J.; Mittal, V.: Assembly of layered double hydroxide on multi-walled carbon nanotubes as reinforcing hybrid nanofiller in thermoplastic polyurethane/nitrile butadiene rubber blends. Polym. Int. 65, 93–101 (2016). https://doi.org/10.1002/pi.5032

    Article  Google Scholar 

  39. Álvarez, M.G.; Tichit, D.; Medina, F.; Llorca, J.: Role of the synthesis route on the properties of hybrid LDH-graphene as basic catalysts. Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.11.037

    Article  Google Scholar 

  40. Ma, R.; Liu, X.; Liang, J.; Bando, Y.; Sasaki, T.: Molecular-scale heteroassembly of redoxable hydroxide nanosheets and conductive graphene into superlattice composites for high-performance supercapacitors. Adv. Mater. 26, 4173–4178 (2014). https://doi.org/10.1002/adma.201400054

    Article  Google Scholar 

  41. Ma, W.; Ma, R.; Wang, C.; Liang, J.; Liu, X.; Zhou, K.; Sasaki, T.: A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 9, 1977–1984 (2015). https://doi.org/10.1021/nn5069836

    Article  Google Scholar 

  42. Tang, S.; Lee, H.K.: Application of dissolvable layered double hydroxides as sorbent in dispersive solid-phase extraction and extraction by co-precipitation for the determination of aromatic acid anions. Anal. Chem. 85, 7426–7433 (2013). https://doi.org/10.1021/ac4013573

    Article  Google Scholar 

  43. Wang, Z.; Wang, X.; Xie, G.; Li, G.; Zhang, Z.: Preparation and characterization of polyethylene/TiO\(_2\) nanocomposites. Compos. Interfaces 13, 623–632 (2006). https://doi.org/10.1163/156855406778440730

    Article  Google Scholar 

  44. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  45. Buffet, J.-C.; Byles, C.F.H.; Felton, R.; Chen, C.; O’Hare, D.: Metallocene supported core@LDH catalysts for slurry phase ethylene polymerisation. Chem. Commun. 52, 4076–4079 (2016). https://doi.org/10.1039/C6CC00280C

    Article  Google Scholar 

  46. Buffet, J.-C.; Turner, Z.R.; Cooper, R.T.; O’Hare, D.: Ethylene polymerisation using solid catalysts based on layered double hydroxides. Polym. Chem. 6, 2493–2503 (2015). https://doi.org/10.1039/C4PY01742K

    Article  Google Scholar 

  47. Choi, B.; Lee, J.; Lee, S.; Ko, J.-H.; Lee, K.-S.; Oh, J.; Han, J.; Kim, Y.-H.; Choi, I.S.; Park, S.: Generation of ultra-high-molecular-weight polyethylene from metallocenes immobilized onto N-doped graphene nanoplatelets. Macromol. Rapid Commun. 34, 533–538 (2013). https://doi.org/10.1002/marc.201200768

    Article  Google Scholar 

  48. Lee, J.S.; Ko, Y.S.: Synthesis of petaloid graphene/polyethylene composite nanosheet produced by ethylene polymerization with metallocene catalyst adsorbed on multilayer graphene. Catal. Today 232, 82–88 (2014). https://doi.org/10.1016/j.cattod.2014.02.003

    Article  Google Scholar 

  49. Zhang, H.-X.; Ko, E.-B.; Park, J.-H.; Moon, Y.-K.; Zhang, X.-Q.; Yoon, K.-B.: Fabrication of polyethylene/graphene nanocomposites through in situ polymerization with a spherical graphene/MgCl2-supported Ziegler–Natta catalyst. Compos. Sci. Technol. 136, 61–66 (2016). https://doi.org/10.1016/j.compscitech.2016.10.005

    Article  Google Scholar 

  50. Gao, Y.; Wang, Q.; Wang, J.; Huang, L.; Yan, X.; Zhang, X.; He, Q.; Xing, Z.; Guo, Z.: Synthesis of highly efficient flame retardant high-density polyethylene nanocomposites with inorgano-layered double hydroxides as nanofiller using solvent mixing method. ACS Appl. Mater. Interfaces. 6, 5094–5104 (2014). https://doi.org/10.1021/am500265a

    Article  Google Scholar 

  51. Costa, F.R.; Abdel-Goad, M.; Wagenknecht, U.; Heinrich, G.: Nanocomposites based on polyethylene and Mg–Al layered double hydroxide. I. Synthesis and characterization. Polymer (Guildf) 46, 4447–4453 (2005). https://doi.org/10.1016/j.polymer.2005.02.027

    Article  Google Scholar 

  52. Du, L.; Qu, B.: Structural characterization and thermal oxidation properties of LLDPE/MgAl-LDH nanocomposites. J. Mater. Chem. 16, 1549 (2006). https://doi.org/10.1039/b514319e

    Article  Google Scholar 

  53. Huang, G.; Chen, S.; Song, P.; Lu, P.; Wu, C.; Liang, H.: Combination effects of graphene and layered double hydroxides on intumescent flame-retardant poly(methyl methacrylate) nanocomposites. Appl. Clay Sci. 88–89, 78–85 (2014). https://doi.org/10.1016/j.clay.2013.11.002

    Article  Google Scholar 

  54. Lee, Y.R.; Kim, S.C.; Lee, H.; Jeong, H.M.; Raghu, A.V.; Reddy, K.R.; Kim, B.K.: Graphite oxides as effective fire retardants of epoxy resin. Macromol. Res. 19, 66–71 (2011). https://doi.org/10.1007/s13233-011-0106-7

    Article  Google Scholar 

  55. Shi, Y.; Chen, F.; Yang, J.; Zhong, M.: Crystallinity and thermal stability of LDH/polypropylene nanocomposites. Appl. Clay Sci. 50, 87–91 (2010). https://doi.org/10.1016/j.clay.2010.07.007

    Article  Google Scholar 

  56. Ardanuy, M.; Velasco, J.I.: Mg–Al layered double hydroxide nanoparticles. Appl. Clay Sci. 51, 341–347 (2011). https://doi.org/10.1016/j.clay.2010.12.024

    Article  Google Scholar 

  57. Costa, F.R.; Wagenknecht, U.; Heinrich, G.: LDPE/Mg–Al layered double hydroxide nanocomposite: thermal and flammability properties. Polym. Degrad. Stab. 92, 1813–1823 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.07.009

    Article  Google Scholar 

  58. Majoni, S.: Thermal and flammability study of polystyrene composites containing magnesium-aluminum layered double hydroxide (MgAl-C16 LDH), and an organophosphate. J. Therm. Anal. Calorim. 120, 1435–1443 (2015). https://doi.org/10.1007/s10973-015-4427-1

    Article  Google Scholar 

  59. Liu, J.; Tao, Y.; Zhou, K.; Shi, Y.; Feng, X.; Jie, G.; Yuen, R.K.K.; Hu, Y.: The influence of typical layered inorganic compounds on the improved thermal stability and fire resistance properties of polystyrene nanocomposites. Polym. Compos. 38, E320–E330 (2017). https://doi.org/10.1002/pc.23792

    Article  Google Scholar 

  60. Chen, W.; Qu, B.: Structural characteristics and thermal properties of PE-g-MA/MgAl-LDH exfoliation nanocomposites synthesized by solution intercalation. Chem. Mater. 15, 3208–3213 (2003). https://doi.org/10.1021/cm030044h

    Article  Google Scholar 

  61. Du, L.; Qu, B.; Meng, Y.; Zhu, Q.: Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation. Compos. Sci. Technol. 66, 913–918 (2006). https://doi.org/10.1016/j.compscitech.2005.08.012

    Article  Google Scholar 

  62. Du, L.; Qu, B.; Zhang, M.: Thermal properties and combustion characterization of nylon 6/MgAl-LDH nanocomposites via organic modification and melt intercalation. Polym. Degrad. Stab. 92, 497–502 (2007). https://doi.org/10.1016/j.polymdegradstab.2006.08.001

    Article  Google Scholar 

  63. Peterson, J.D.; Vyazovkin, S.; Wight, C.A.: Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol. Chem. Phys. 202, 775–784 (2001). https://doi.org/10.1002/1521-3935(20010301)202:6%3c775::AID-MACP775%3e3.0.CO;2-G

    Article  Google Scholar 

  64. Friedman, H.L.: Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 6, 183–195 (2007). https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  65. Zubair, M.; Shehzad, F.; Al-Harthi, M.A.: Impact of modified graphene and microwave irradiation on thermal stability and degradation mechanism of poly (styrene-co-methyl meth acrylate). Thermochim. Acta. 633, 48–55 (2016). https://doi.org/10.1016/j.tca.2016.03.034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamdouh A. Al-Harthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daud, M., Shehzad, F. & Al-Harthi, M.A. Metallocene-Catalyzed Copolymerization of Ethylene and 1-Hexene in the Presence of Graphene/MgAl LDH Nanofiller: Effect on the Activity, SCB, and Thermal Stability. Arab J Sci Eng 43, 6021–6032 (2018). https://doi.org/10.1007/s13369-018-3239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3239-6

Keywords

Navigation