Skip to main content
Log in

A Blind, Semi-Fragile 3D mesh Watermarking Algorithm Using Minimum Distortion Angle Quantization Index Modulation (3D-MDAQIM)

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This work proposes a semi-fragile, blind watermarking scheme in spatial domain to substantiate the authenticity of 3D models. The 3D mesh is first traversed with a topology-oriented strategy which also decides the verification units. Every verification unit comprises of a set of embedding eligible vertices and one verification code embeddable vertex. Watermark embedding is carried out by first applying dither modulation to the spherical angular values theta \((\theta )\) and phi \((\phi )\) of the embedding eligible vertices. During the process of dithering, the angular values are quantized with 3D-MDAQIM using quantization step sizes \(\varDelta _\theta \) and \(\varDelta _\phi \) that incurs minimum distortion. A theoretical analysis is conducted to present the imperceptibility assessment. In order to verify the integrity of the 3D model, verification bits are computed from the local geometry of the mesh and embedded to the respective embeddable vertices using message digit substitution scheme. Further more, experimental results show that the proposed method yields minimal distortion with regional attack localization capability. This work performs better than the state-of-the-art semi-fragile mesh watermarking algorithms in terms of embedding capacity, robustness toward content-preserving attacks and distortion control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liao, X.; Qin, Z.; Ding, L.: Data embedding in digital images using critical functions. Signal Process. Image Commun. 58, 146–156 (2017)

    Article  Google Scholar 

  2. Al-Haj, A.M.: Advanced Techniques in Multimedia Watermarking: Image, Video and Audio Applications–Image, Video and Audio Applications. IGI Global, Hershey (2010)

    Book  Google Scholar 

  3. Liao, X.; Yin, J.; Guo, S.; Li, X.; Sangaiah, A.K.: Medical JPEG image steganography based on preserving inter-block dependencies. Comput. Electr. Eng. 67, 320–329 (2018)

    Article  Google Scholar 

  4. Medimegh, N.; Belaid, S.; Werghi, N.: A survey of the 3d triangular mesh watermarking techniques. Int J Multimed (2015). https://doi.org/10.16966/ijm.102

  5. Wang, K.; Lavoué, G.; Denis, F.; Baskurt, A.: A comprehensive survey on three-dimensional mesh watermarking. IEEE Trans. Multimed. 10(8), 1513–1527 (2008a)

    Article  Google Scholar 

  6. Wang, J.T.; Chang, Y.C.; Yu, C.Y.; Yu, S.S.: Hamming code based watermarking scheme for 3d model verification. Math. Prob. Eng. (2014a). https://doi.org/10.1155/2014/241093

  7. Tsai, Y.Y.; Cheng, T.C.; Huang, Y.H.: A low-complexity region-based authentication algorithm for 3d polygonal models. Secur. Commun. Netw. (2017). https://doi.org/10.1155/2017/1096463

  8. Wang, W.B.; Zheng, G.Q.; Yong, J.H.; Gu, H.J.: A numerically stable fragile watermarking scheme for authenticating 3d models. Comput. Aided Des. 40(5), 634–645 (2008b)

    Article  Google Scholar 

  9. Chou, C.M.; Tseng, D.C.: Affine-transformation-invariant public fragile watermarking for 3d model authentication. IEEE Comput. Gr. Appl. 29(2), 72–79 (2009)

    Article  Google Scholar 

  10. Molaei, A.M.; Ebrahimnezhad, H.; Sedaaghi, M.H.: A blind fragile watermarking method for 3d models based on geometric properties of triangles. 3D Res. 4(4), 1–9 (2013)

    Article  Google Scholar 

  11. Lin, H.Y.; Liao, H.Y.; Lu, C.S.; Lin, J.C.: Fragile watermarking for authenticating 3-d polygonal meshes. IEEE Trans. Multimed. 7(6), 997–1006 (2005)

    Article  Google Scholar 

  12. Wu, H.T.; Cheung, Y.M.: A reversible data hiding approach to mesh authentication. In: The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05), IEEE, pp. 774–777 (2005)

  13. Wu, H.T.; Cheung, Y.M.: Reversible watermarking by modulation and security enhancement. IEEE Trans. Instrum. Meas. 59(1), 221–228 (2010)

    Article  Google Scholar 

  14. Xu, T.; Cai, Z.G.: A novel semi-fragile watermarking algorithm for 3d mesh models. In: 2012 International Conference on Control Engineering and Communication Technology (ICCECT), IEEE, pp. 782–785 (2012)

  15. Huang, C.C.; Yang, Y.W.; Fan, C.M.; Wang, J.T.: A spherical coordinate based fragile watermarking scheme for 3d models. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Springer, pp 566–571 (2013)

  16. Yeo, B.L.; Yeung, M.M.: Watermarking 3d objects for verification. IEEE Comput. Gr. Appl. 19(1), 36–45 (1999)

    Article  Google Scholar 

  17. Chou, C.M.; Tseng, D.C.: A public fragile watermarking scheme for 3d model authentication. Comput. Aided Des. 38(11), 1154–1165 (2006)

    Article  Google Scholar 

  18. Chen, T.Y.; Hwang, M.S.; Jan, J.K.: Adaptive authentication schemes for 3d mesh models. Int. J. Innov. Comput. Inf. Control 5(12), 4561–4572 (2009)

    Google Scholar 

  19. Wang, J.T.; Fan, C.M.; Huang, C.C.; Li, C.C.: Error detecting code based fragile watermarking scheme for 3d models. In: 2014 International Symposium on Computer, Consumer and Control (IS3C), IEEE, pp. 1099–1102 (2014b)

  20. Wang, J.T.; Yang, W.H.; Wang, P.C.; Chang, Y.T.: A novel chaos sequence based 3d fragile watermarking scheme. In: 2014 International Symposium on Computer, Consumer and Control (IS3C), IEEE, pp. 745–748 (2014c)

  21. Wang, J.T.; Chang, Y.C.; Lu, C.W.; Yu, S.S.: An OFB-based fragile watermarking scheme for 3d polygonal meshes. In: 2016 International Symposium on Computer, Consumer and Control (IS3C), IEEE, pp 291–294 (2016)

  22. Vasic, B.; Vasic, B.: Simplification resilient IDPC-coded sparse-qim watermarking for 3d-meshes. IEEE Trans. Multimed. 15(7), 1532–1542 (2013)

    Article  Google Scholar 

  23. Youssef, A.E.; Sheta, W.: Using chaotic 3d watermarking for game design copy right protection. In: 2012 17th International Conference on Computer Games (CGAMES), IEEE, pp. 221–229 (2012)

  24. Yz, Zhan; Yt, Li; Xy, Wang; Qian, Y.: A blind watermarking algorithm for 3d mesh models based on vertex curvature. J. Zhejiang Univ. Sci. C 15(5), 351–362 (2014)

    Google Scholar 

  25. Bajaj, C.L.; Pascucci, V.; Zhuang, G.: Single resolution compression of arbitrary triangular meshes with properties1. Comput. Geom. 14(1–3), 167–186 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zafeiriou, S.; Tefas, A.; Pitas, I.: Blind robust watermarking schemes for copyright protection of 3d mesh objects. IEEE Trans. Vis. Comput. Gr. 11(5), 596–607 (2005)

    Article  Google Scholar 

  27. Huang, Y.H.; Tsai, Y.Y.: A reversible data hiding scheme for 3d polygonal models based on histogram shifting with high embedding capacity. 3D Res. 6(2), 1–12 (2015)

    Article  Google Scholar 

  28. Ourique, F.; Licks, V.; Jordan, R.; Pérez-González, F.: Angle qim: A novel watermark embedding scheme robust against amplitude scaling distortions. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005 (ICASSP’05), IEEE, vol. 2, pp. 2–797 (2005)

  29. Wang, Y.G.; Zhu, G.: An improved aqim watermarking method with minimum-distortion angle quantization and amplitude projection strategy. Inf. Sci. 316, 40–53 (2015)

    Article  MATH  Google Scholar 

  30. Nezhadarya, E.; Wang, Z.J.; Ward, R.K.: Robust image watermarking based on multiscale gradient direction quantization. IEEE Trans. Inf. Forensics Secur. 6(4), 1200–1213 (2011)

    Article  Google Scholar 

  31. Wang, K.; Lavoué, G.; Denis, F.; Baskurt, A.: Robust and blind mesh watermarking based on volume moments. Comput. Gr. 35(1), 1–19 (2011)

    Article  Google Scholar 

  32. Li, H.; Sun, Z.; He, M.; Ma, W.: A mesh watermarking method based on local roughness analysis. In: 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), IEEE, pp 379–383 (2015)

  33. Lavoué, G.; Gelasca, E.D.; Dupont, F.; Baskurt, A.; Ebrahimi, T.: Perceptually driven 3d distance metrics with application to watermarking. In: SPIE Optics+ Photonics, International Society for Optics and Photonics, pp 63,120L (2006)

  34. Wang, K.; Torkhani, F.; Montanvert, A.: A fast roughness-based approach to the assessment of 3d mesh visual quality. Comput. Gr. 36(7), 808–818 (2012b)

    Article  Google Scholar 

  35. Wang, K.; Lavoué, G.; Denis, F.; Baskurt, A.; He, X.: A benchmark for 3d mesh watermarking. In: 2010 Shape Modeling International Conference, IEEE, pp. 231–235 (2010)

  36. Lavoué, G.; Tola, M.; Dupont, F.; Lavou, G.: Mepp-3d mesh processing platform. In: GRAPP/IVAPP, pp 206–210 (2012)

  37. Wang, J.; Feng, J.; Miao, Y.: A robust confirmable watermarking algorithm for 3d mesh based on manifold harmonics analysis. Vis. Comput. 28(11), 1049–1062 (2012a)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagarika Borah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borah, S., Borah, B. A Blind, Semi-Fragile 3D mesh Watermarking Algorithm Using Minimum Distortion Angle Quantization Index Modulation (3D-MDAQIM). Arab J Sci Eng 44, 3867–3882 (2019). https://doi.org/10.1007/s13369-018-03714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-03714-5

Keywords

Navigation