Skip to main content
Log in

Recent Advances in Horizontal Jet Grouting (HJG): An Overview

  • Review Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper discusses recent advances in the implementation of horizontal jet grouting (HJG) for the ground improvement of soft soil. Field trials of HJG were undertaken in soft soils in Shanghai, and the research is reported and discussed in this paper. Particular emphasis was placed to study the hardening process in non-cohesive soils. The recent innovations in HJG were found to arise principally from challenges in implementing jet grouting in sandy soil and also from the harmful effects on the surrounding caused by the traditional implementation process. Accordingly, the recently developed composite jet pipe, pressure-control jet grouting and control discharge horizontal jet grouting methods have been successfully implemented to mitigate the ground upheaval and displacements. Moreover, the characteristics of the jet grout columns obtained with these methods were found as a rule to perform beyond expectations. It was also found that the newly developed horizontal twin-jet grouting technology, underpinned by an instant-solidification mechanism, overcame challenging issues such as mixing uniformity, loss of admixture and hardening. The characteristics of hardening in particular have initiated new perspectives, given that a better acquaintance of the mechanisms of hardening and ground displacements is bound to play an important role in the future practice and the development of the jet grouting process. Interestingly, smoothed particle hydrodynamics technique was found to be suited for modeling jet grouting mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen, S.L.; Wang, Z.F.; Yang, J.; Ho, E.C.: Generalized approach for prediction of jet grout column diameter. J. Geotech. Geoenviron. Eng. 139(12), 2060–2069 (2013). doi:10.1061/(ASCE)GT.1943-5606.0000932

    Article  Google Scholar 

  2. Shen, S.L.; Wang, Z.F.; Cheng, W.C.: Estimation of lateral displacement induced by jet grouting in clayey soils. ICE Geotech. 67(7), 621–630 (2017). doi:10.1680/geot./16-P-159

    Article  Google Scholar 

  3. Wang, Z.F.; Shen, S.L.; Ho, E.C.; Kim, Y.H.: Investigation of field installation effects of horizontal twin-jet grouting in Shanghai soft soil deposits. Can. Geotech. J. 50(3), 288–297 (2013). doi:10.1139/cgj-2012-0199

    Article  Google Scholar 

  4. Dhouib, A.; Magnan, J.P.; Guilloux, A.: Soil improvement techniques: history, geotechnical investigations, applications and economic data. In: Magnan, J.P. (ed.) ASEP-GI 2004, vol. 2, pp. 557–595. Presses de l’ENPC/LCPC, Paris (2004)

    Google Scholar 

  5. Brill, G.; Burke, G.; Ringen, A.A.: Ten-year perspective of jet grouting: advancements in applications and technology. In: Third international conference on grouting and ground treatment, pp. 218–235 (2003). doi:10.1061/40663(2003)101

  6. Bienfait, P.; Hingant, P.; Mariotti, G.; Guilloux, A.; Lemaout, J.N.: L’accident geologique du tunnel des Hurtieres sur A43. Comptes rendus des journees d’etudes de l’AFTES, Chambéry, pp. 353–363 (1996)

  7. Du, Y.J.; Jiang, N.J.; Liu, S.Y.; Jin, F.; Singh, D.N.; Pulppara, A.: Engineering properties and microstructural characteristics of cement solidified zinc-contaminated kaolin clay. Can. Geotech. J. 51, 289–302 (2014)

    Article  Google Scholar 

  8. Du, Y.J.; Fan, R.D.; Reddy, K.R.; Liu, S.Y.; Yang, Y.L.: Impacts of presence of lead contamination in clayey soil-calcium bentonite cutoff wall backfills. Appl. Clay Sci. 108, 111–122 (2015)

    Article  Google Scholar 

  9. Du, Y.J.; Jiang, N.J.; Liu, S.Y.; Horpibulski, S.; Arulrajah, A.: Field evaluation of soft highway subgrade soil stabilized with calcium carbide residue. Soils Found. 56(2), 301–314 (2016)

    Article  Google Scholar 

  10. Tan, Y.; Wang, D.: Structural behaviors of large underground earth-retaining systems in Shanghai. I: unpropped circular diaphragm wall. J. Perform. Constr. Facil. ASCE 29(2), 04014058 (2015). doi:10.1061/(ASCE)CF.1943-5509.0000521

    Article  Google Scholar 

  11. Tan, Y.; Wang, D.: Structural behaviors of large underground earth-retaining systems in Shanghai. II: multipropped rectangular diaphragm wall. J. Perform. Constr. Facil. ASCE 29(2), 04014059 (2015). doi:10.1061/(ASCE)CF.1943-5509.0000535

    Article  Google Scholar 

  12. Tan, Y.; Wei, B.; Zhou, X.; Diao, Y.: Lessons learned from construction of shanghai metro stations: importance of quick excavation, prompt propping, timely casting, and segmented construction. J. Perform. Constr. Facil. 29(4), 4014096 (2015). doi:10.1061/(ASCE)CF.1943-5509.0000599

    Article  Google Scholar 

  13. Tan, Y.; Lu, Y.: Why excavation of a small air shaft caused excessively large displacements: forensic investigation. J. Perform. Constr. Facil. ASCE 04016083, 1–20 (2016). doi:10.1061/(ASCE)CF.1943-5509.0000947

    Google Scholar 

  14. Wu, H.N.; Shen, S.L.; Ma, L.; Yin, Z.Y.; Horpibulsuk, S.: Evaluation of the strength increase of marine clay under staged embankment loading: a case study. Mar. Georesour. Geotechnol. 33(6), 532–541 (2015)

    Article  Google Scholar 

  15. Zhang, N.; Shen, S.L.; Wu, H.N.; Chai, J.C.; Yin, Z.Y.: Evaluation of effect of basal geotextile reinforcement under embankment loading on soft marine deposits. Geotext. Geomembr. 43(6), 506–514 (2015)

    Article  Google Scholar 

  16. Ni, J.C.; Cheng, W.C.; Ge, L.: A case history of field pumping tests in a deep gravel formation in the Taipei Basin, Taiwan. Eng. Geol. 117(1–2), 17–28 (2011). doi:10.1016/j.enggeo.2010.10.001

    Article  Google Scholar 

  17. Ni, J.C.; Cheng, W.C.: Steering characteristics of microtunnelling in various deposits. Tunn. Undergr. Space Technol. 28, 321–330 (2012)

    Article  Google Scholar 

  18. Ni, J.C.; Cheng, W.C.: Quality control of double fluid jet grouting below groundwater table: case history. Soils Found. 54(6), 1039–1053 (2014)

    Article  Google Scholar 

  19. Ni, J.C.; Cheng, W.C.: Shield machine disassembly in grouted soils outside the ventilation shaft: a case history in Taipei Rapid Transit System (TRTS). Tunn. Undergr. Space Technol. 26(2), 435–443 (2011)

    Article  Google Scholar 

  20. Ni, J.C.; Cheng, W.C.; Ge, L.: A simple data reduction method for pumping tests with tidal, partial penetration, and storage effects. Soils Found. 53(6), 894–902 (2013). doi:10.1016/j.sandf.2013.10.008

    Article  Google Scholar 

  21. Cui, Q.L.; Shen, S.L.; Xu, Y.S.; Wu, H.N.; Yin, Z.Y.: Mitigation of geohazards during deep excavation in Karst region with caverns: a case study. Eng. Geol. 195(2015), 16–27 (2015). doi:10.1016/j.enggeo.2015.05.024

    Article  Google Scholar 

  22. Cui, Q.L.; Wu, H.N.; Shen, S.L.; Xu, Y.S.; Ye, G.L.: Chinese Karst geology and measures to prevent geohazards during shield tunnelling in Karst regions with caves. Nat. Hazards 77, 129–152 (2015). doi:10.1007/s11069-014-1585-6

    Article  Google Scholar 

  23. Chai, J.C.; Shen, S.L.; Zhu, H.H.; Zhang, X.L.: Land subsidence due to groundwater drawdown in Shanghai. Géotechnique 54(3), 143–148 (2004). doi:10.1680/geot.2004.54.2.143

    Article  Google Scholar 

  24. Shen, S.L.; Xu, Y.S.; Hong, Z.S.: Estimation of land subsidence based on groundwater flow model. Mar. Georesour. Geotechnol. 24(2), 149–167 (2006). doi:10.1080/10641190600704848

    Article  Google Scholar 

  25. Shen, S.L.; Ma, L.; Xu, Y.S.; Yin, Z.Y.: Interpretation of increased deformation rate in aquifer IV due to groundwater pumping in Shanghai. Can. Geotech. J. 50(11), 1129–1142 (2013). doi:10.1139/cgj-2013-0042

    Article  Google Scholar 

  26. Shen, S.L.; Xu, Y.S.: Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can. Geotech. J. 48(9), 1378–1392 (2011). doi:10.1139/T11-049

    Article  Google Scholar 

  27. Wu, H.N.; Shen, S.L.; Liao, S.M.; Yin, Z.Y.: Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings. Tunn. Undergr. Space Technol. 50(2015), 317–323 (2015)

    Article  Google Scholar 

  28. Wu, Y.X.; Shen, S.L.; Xu, Y.S.; Yin, Z.Y.: Characteristics of groundwater seepage with cut-off wall in gravel aquifer. I: field observations. Can. Geotech. J. 52(10), 1526–1538 (2015). doi:10.1139/cgj-2014-0285

    Article  Google Scholar 

  29. Wu, Y.X.; Shen, S.L.; Yin, Z.Y.; Xu, Y.S.: Characteristics of groundwater seepage with cut-off wall in gravel aquifer. II: numerical analysis. Can. Geotech. J. 52(10), 1539–1549 (2015). doi:10.1139/cgj-2014-0289

    Article  Google Scholar 

  30. Wu, Y.X.; Shen, S.L.; Yuan, D.J.: Characteristics of dewatering induced drawdown curve under blocking effect of retaining wall in aquifer. J. Hydrol. 539, 554–566 (2016). doi:10.1016/j.jhydrol.2016.05.065

    Article  Google Scholar 

  31. Xu, Y.S.; Shen, S.L.; Cai, Z.Y.; Zhou, G.Y.: The state of land subsidence and prediction activities due to groundwater withdrawal in China. Nat. Hazards 45(1), 123–135 (2008). doi:10.1007/s11069-007-9168-4

    Article  Google Scholar 

  32. Xu, Y.S.; Ma, L.; Du, Y.J.; Shen, S.L.: Analysis of urbanization-induced land subsidence in Shanghai. Nat. Hazards 63(2), 1255–1267 (2012). doi:10.1007/s11069-012-0220-7

    Article  Google Scholar 

  33. Xu, Y.S.; Shen, S.L.; Du, Y.J.; Chai, J.C.; Horpibulsuk, S.: Modelling the cutoff behavior of underground structure in multi-aquifer–aquitard groundwater system. Nat. Hazards 66(2), 731–748 (2013). doi:10.1007/s11069-012-0512-y

    Article  Google Scholar 

  34. Xu, Y.S.; Shen, S.L.; Ma, L.; Sun, W.J.; Yin, Z.Y.: Evaluation of the blocking effect of retaining walls on groundwater seepage in aquifers with different insertion depths. Eng. Geol. 183(2014), 254–264 (2014). doi:10.1016/j.enggeo.2014.08.023

    Article  Google Scholar 

  35. Xu, Y.S.; Yuan, Y.; Shen, S.L.; Yin, Z.Y.; Wu, H.N.; Ma, L.: Investigation into subsidence hazards due to groundwater pumping from Aquifer II in Changzhou, China. Nat. Hazards 78(1), 281–296 (2015). doi:10.1007/s11069-015-1714-x

    Article  Google Scholar 

  36. Xu, Y.S.; Shen, S.L.; Ren, D.J.; Wu, H.N.: Factor analysis of land subsidence in Shanghai: a view based on strategic environmental assessment. Sustainability 8(573), 1–12 (2016). doi:10.3390/su8060573

    Google Scholar 

  37. Chai, J.C.; Shen, S.L.; Ding, W.Q.; Zhu, H.H.; Cater, J.P.: Numerical investigation of the failure of a building in Shanghai, China. Comput. Geotech. 55(2014), 482–493 (2014). doi:10.1016/j.compgeo.2013.10.001

    Article  Google Scholar 

  38. Ma, L.; Xu, Y.S.; Shen, S.L.; Sun, W.J.: Evaluation of the hydraulic conductivity of aquifers with piles. Hydrogeol. J. 22(2), 371–382 (2014). doi:10.1007/s10040-013-1068-y

    Article  Google Scholar 

  39. Shen, S.L.; Han, J.; Du, Y.J.: Deep mixing induced property changes in surrounding sensitive marine clays. J. Geotech. Geoenviron. Eng. 134(6), 845–854 (2008). doi:10.1061/(ASCE)1090-0241(2008)134:6(845)

    Article  Google Scholar 

  40. Shen, S.L.; Wang, J.P.; Wu, H.N.; Xu, Y.S.; Ye, G.L.; Yin, Z.Y.: Evaluation of hydraulic conductivity for both marine and deltaic deposit based on piezocone test. Ocean Eng. 110(2015), 174–182 (2015). doi:10.1016/j.oceaneng.2015.10.011

    Article  Google Scholar 

  41. Yin, Z.Y.; Karstunen, M.; Chang, C.S.; Koskinen, M.; Lojander, M.: Modeling time-dependent behavior of soft sensitive clay. ASCE J. Geotech. Geoenviron. Eng. 137(11), 1103–1113 (2011). doi:10.1061/(ASCE)GT.1943-5606.0000527

    Article  Google Scholar 

  42. Yin, Z.Y.; Xu, Q.; Chang, C.S.: Modeling cyclic behavior of clay by micromechanical approach. ASCE J. Eng. Mech. 139(9), 1305–1309 (2013). doi:10.1061/(ASCE)EM.1943-7889.0000516

    Article  Google Scholar 

  43. Yin, Z.Y.; Zhu, Q.Y.; Yin, J.H.; Ni, Q.: Stress relaxation coefficient and formulation for soft soils. Géotech. Lett. 4(1), 45–51 (2014). doi:10.1680/geolett.13.00070c

    Article  Google Scholar 

  44. Yin, Z.Y.; Xu, Q.; Yu, C.: Elastic viscoplastic modeling for natural soft clays considering nonlinear creep. ASCE Int. J. Geomech. 15(5), A6014001 (2015). doi:10.1061/(ASCE)GM.1943-5622.0000284

    Article  Google Scholar 

  45. Essler, R.; Yoshida, H.: Jet Grouting–From Ground Improvement, 2nd edn. Taylor and Francis, New York (2004)

    Google Scholar 

  46. Shen, S.L.; Xu, Y.S.; Han, J.; Zhang, J.M.: State of the practice of grouting and deep mixing in China—a recent ten-year review. In: Johnsen, L.F., Bruce, D.A., Byle, M.J. (eds.) Grouting and Deep Mixing 2012, Geotechnical Special Publication No. 228, vol. 1, pp. 343–356. ASCE, Reston (2012)

    Chapter  Google Scholar 

  47. Shen, S.L.; Luo, C.Y.; Xiao, X.C.; Wang, J.L.: Improvement efficacy of RJP method in Shanghai soft deposit. In: Han, J., Zheng, G., Schaefer, V.R., Huang, M. (eds.) Advances in Ground Improvement (GSP 188), pp. 170–177. ASCE Press, Reston (2009)

    Chapter  Google Scholar 

  48. Modoni, G.; Croce, P.; Mongiovi, L.: Theoretical modelling of jet grouting. Géotechnique 56(5), 335–347 (2006)

    Article  Google Scholar 

  49. Burke, G.K.: Jet grouting systems: advantages and disadvantages. In: GeoSupport 2004: Drilled Shafts, Micropiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems, Orlando, pp. 875–886 (2004)

  50. Croce, P.; Flora, A.: Analysis of single-fluid jet grouting. Géotechnique 50(6), 739–748 (2000). doi:10.1680/geot.2000.50.6.739

    Article  Google Scholar 

  51. Ochmański, M.; Modoni, G.; Bzówka, J.: Prediction of the diameter of jet grouting columns with artificial neural networks. Soils Found. 55(2), 425–436 (2015). doi:10.1016/j.sandf.2015.02.016

    Article  Google Scholar 

  52. Flora, A.; Modoni, G.; Lirer, S.; Croce, P.: The diameter of single, double and triple fluid jet grouting columns: prediction method and field trial results. Géotechnique 63(11), 934–945 (2013). doi:10.1680/geot.12.P.062

    Article  Google Scholar 

  53. Wang, Z.F.; Shen, S.L.; Yang, J.: Estimation of the diameter of jet-grouted column based on turbulent kinematic flow theory. In: Johnsen, L., Bruce, D.A., Byle, M.J. (eds.) Grouting and Deep Mixing 2012. Proceedings of the Fourth International Conference on Grouting and Deep Mixing, New Orleans, Louisiana, 15–18 Feb 2012. Geotechnical Special Publication No. 228, pp. 2044–2051. American Society of Civil Engineers, Reston, VA (2012). http://ascelibrary.org/doi/book/10.1061/9780784412350

  54. Wang, Z.F.; Shen, S.L.; Ho, E.C.; Kim, Y.H.: Jet grouting practice: an overview. Geotech. Eng. J. SEAGS 44(4), 88–96 (2013b)

    Google Scholar 

  55. Shibazaki, M.: State of the art of grouting in Japan. In: Proceedings of the IS-Tokyo ’96, the 2nd International Conference of Ground Improvement and Geosystems, pp. 851–867. Japanese Geotechnical Society, Tokyo (1996)

  56. Yoshida, H.: Recent developments in jet grouting. In: Conference: Proceedings of the Fourth International Conference on Grouting and Deep Mixing, New Orleans, Louisiana, United States, pp. 1548–1561 (2012). doi:10.1061/9780784412350.0130

  57. Ribeiro, D.; Cardoso, R.: A review on models for the prediction of the diameter of jet grouting columns. Eur. J. Environ. Civ. Eng. 2016, 1–29 (2016). doi:10.1080/19648189.2016.1144538

    Google Scholar 

  58. Shibazaki, M.: State of practice of jet grouting. In: Johnsen, L.F., Bruce, D.A., Byle, M.J. (eds.) Third International Conference on Grouting and Ground Treatment, New Orleans, Louisiana, United States, 10–12 Feb 2003, pp. 198–217. American Society of Civil Engineers (2003). doi:10.1061/40663(2003)7

  59. Modoni, G.; Bzówka, J.: Analysis of foundations reinforced with jet grouting. J. Geotech. Geoenviron. Eng. 138(12), 1442–1454 (2012). doi:10.1061/(ASCE)GT.1943-5606.0000718

    Article  Google Scholar 

  60. Croce, P.; Modoni, G.: Design of jet grouting cut-offs. Proc. Inst. Civ. Eng. Ground Improv. 11(1), 11–19 (2007). ISSN 1365-781X

    Article  Google Scholar 

  61. Flora, A.; Lirer, S.; Lignola, G.P.; Modoni, G.: Mechanical analysis of jet grouted supported structures. In: Viggiani, V. (ed.) Proceedings of the 7th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, TC28 IS Rome, pp. 819–828. Taylor & Francis Group, London, 16–18 May 2011, ISBN: 978-0-415-66367-8 (2012)

  62. Modoni, G.; Flora, A.; Lirer, S.; Ochmanski, M.; Croce, P.: Design of jet grouted excavation bottom plugs. J. Geotech. Geoenviron. Eng. (ASCE) 142(7), 04016018 (2016). doi:10.1061/(asce)gt.1943-5606.0001436

  63. Croce, P.; Flora, A.; Modoni, G.: Jet-grouted structures. In: Jet Grouting: Technology, Design and Control, pp. 97–121. Taylor & Francis Group/CRC Press, New York (2014). ISBN 978-0-415-52640-1

  64. Russo, G.; Modoni, G.: Monitoring results of a tunnel excavation in urban area. In: 5th Internernational Symposium of the Technical Committee TC28, Geotechnical Aspects of Underground Construction in Soft Ground, June 15–17, Amsterdam, Balkema, pp. 751-756 (2005). ISBN: 978-0415391245

  65. Ochmański, M.; Modoni, G.; Bzówka, J.: Numerical analysis of tunnelling with jet-grouted canopy. Soils Found. 55(5), 929–942 (2015). doi:10.1016/j.sandf.2015.08.002

    Article  Google Scholar 

  66. Eramo, N.; Modoni, G.; Arroyo, M.: Design control and monitoring of a jet grouted excavation bottom plug. In: Viggiani, G. (ed.) Proceedings of the 7th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, TC28 IS Rome, pp. 611–618. Taylor & Francis Group, London (2012). ISBN: 978-0-415-66367-8

  67. Guatteri, G.; Koshima, A.; Lopes, J.R.; Ravaglia, A.; Altan, V.D.: \(360^\circ \) jet-grouted conical chambers allow safe tunnelling under a river within a highly previous environment. In: Geo-enge 2000—An International Conference on Geotechnical and Geological Engineering, Melbourne, Australia (2000)

  68. Croce, P.; Modoni, G.; Russo, G.: Jet-grouting performance in tunnelling. In: GeoSupport 2004. Drilled Shafts, Micropiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems, pp. 910–922 (2004). doi:10.1061/40713(2004)78

  69. Elbaz, K.; Shen, J.S.; Arulrajah, A.; Horpibulsuk, S.: Geohazards induced by anthropic activities of geoconstruction: a review of recent failure cases. Arab. J. Geosci. 9(708), 1–11 (2016). doi:10.1007/s12517-016-2740-z

    Google Scholar 

  70. Shen, S.L.; Wang, Z.-F.; Xu, Y.S.; Bai, Y.; Peng, S.J.: An innovative technology of horizontal jet-grouting with less impact on surroundings. In: International Symposium on Advances in Ground Technology and Geo-Information (IS-AGTG), pp. 207–214 (2012)

  71. Yuan, Y.; Shen, S.L.; Wang, Z.F.; Wu, H.N.: Automatic pressure-control equipment for horizontal jet-grouting. Autom. Constr. 69(2016), 11–20 (2016). doi:10.1016/j.autcon.2016.05.025

    Article  Google Scholar 

  72. Wang, Z.F.; Shen, S.L.; Ho, C.E.; Xu, Y.S.: Jet grouting for mitigation of installation disturbance. ICE Proc. Geotech. Eng. 167(GE6), 526–536 (2014). doi:10.1680/geng.13.00103

    Article  Google Scholar 

  73. Shen, S.L.; Wang, Z.F.; Sun, W.J.; Wang, L.B.; Horpibulsuk, S.: A field trial of horizontal jet grouting using the composite-pipe method in the soft deposit of Shanghai. Tunn. Undergr. Space Technol. 35, 142–151 (2013). doi:10.1016/j.tust.2013.01.003

    Article  Google Scholar 

  74. Shen, S.L.; Wang, Z.F.; Horpibulsuk, S.; Kim, Y.H.: Jet-grouting with a newly developed technology: the twin-jet method. Eng. Geol. 152(1), 87–95 (2013). doi:10.1016/j.enggeo.2012.10.018

    Article  Google Scholar 

  75. Xu, Y.S.; Shen, S.L.; Du, Y.J.: Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures. Eng. Geol. 109(3–4), 241–254 (2009)

    Article  Google Scholar 

  76. Wang, Z.F.; Shen, S.L.; Yin, Z.Y.; Xu, Y.S.: Rapid field evaluation of the strength of cement stabilized clayey soil. Bull. Eng. Geol. Environ. 74(3), 991–999 (2015). doi:10.1007/s10064-014-0643-3

    Article  Google Scholar 

  77. Stefanova, B.; Bubel, J.; Grabe, J.: Application of SPH to erosion and excavation problems on the examples of jet grouting and offshore engineering. In: 7th international SPHERIC workshop, Prato, Italy, pp. 38–42 (2012)

  78. Nonoyama, H.; Yashima, A.; Sawada, K.; Moriguchi, S.: Performance of the SPH method for deformation analyses of geomaterials. In: Wan, R., et al. (eds.) Bifurcations, Instabilities and Degradations in Geomaterials, SSGG, pp. 275–290. Springer, Berlin (2011)

    Chapter  Google Scholar 

  79. Liu, M.B.; Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17, 25–76 (2010). doi:10.1007/s11831-010-9040-7

    Article  MathSciNet  MATH  Google Scholar 

  80. Modoni, G.; Wanik, L.; Giovinco, G.; Bzòwka, J.; Leopardi, A.: Numerical analysis of submerged flows for jet grouting. Proc. ICE Ground Improv. 169(1), 42–53 (2016). ISSN: 1365-781X

  81. Stefanova, B.; Grabe, J.: Numerical modeling of the flow and seabed erosion around a pipeline using smoothed particle hydrodynamics (SPH). In: Scour and Erosion: Proceedings of the 7th International Conference on Scour and Erosion, Perth, Australia, pp. 725–732 (2015)

  82. Stefanova, B.; Seitz, K.; Bubel, J.; Grabe, J.: Water–soil interaction simulation using smoothed particle hydrodynamics. In: Proceedings of the 6th International Conference on Scour and Erosion, Paris, France, pp. 695–704 (2012)

  83. Grabe, J.; Stefanova, B.: Large displacements and fluidization of sand due to seepage. In: Scour and Erosion: Proceedings of the 7th International Conference on Scour and Erosion, Perth, Australia, pp. 411–418 (2015)

  84. Bui, H.H.; Fukagawa, R.: An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: case of hydrostatic pore-water pressure. Int. J. Numer. Anal. Methods Geomech. (2011). doi:10.1002/nag.1084

    Google Scholar 

  85. Bui, H.H.; Sako, K.; Fukagawa, R.: Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (SPH) method. J. Terramech. 44, 339–346 (2007)

    Article  Google Scholar 

  86. Gingold, R.A.; Monaghan, J.J.: Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    Article  MATH  Google Scholar 

  87. Lucy, L.: A numerical approach to the fission hypothesis. Astron. J. 82, 1013 (1977)

  88. Liu, M.B.; Liu, G.R.; Lam, K.Y.: Constructing smoothing functions in smoothed particle hydrodynamics with applications. J. Comput. Appl. Math. 155(2), 263–284 (2003)

  89. Liu, G.R.; Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  90. Hughes, J.P.; Graham, D.I.: Comparison of incompressible and weakly-compressible SPH models for free-surface water flows. J. Hydraul. Res. 48(sup1), 105–117 (2010)

    Article  Google Scholar 

  91. Monaghan, J.J.; Kos, A.: Scott Russell’s wave generator. Phys. Fluids 12, 622–630 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  92. Libersky, L.D.; Petschek, A.G.; Carney, T.C.; Hipp, J.R.; Allahady, F.A.: High strain Lagrangian hydrodynamics. J. Comput. Phys. 109, 67 (1993)

    Article  MATH  Google Scholar 

  93. Chai, J.C.; Miura, N.; Koga, H.: Lateral displacement of ground caused by soil–cement column installation. J. Geotech. Geoenviron. Eng. 131(5), 623–632 (2005)

    Article  Google Scholar 

  94. Chai, J.C.; Carter, J.P.; Miura, N.; Zhu, H.H.: Improved prediction of lateral deformations due to installation of soil–cement columns. J. Geotech. Geoenviron. Eng. 135(12), 1836–1845 (2009)

    Article  Google Scholar 

  95. Wang, Z.F.; Bian, X.; Wang, Y.Q.: Numerical approach to predict ground displacement caused by installing a horizontal jet grout column. Mar. Georesour. Geotechnol. (2016). doi:10.1080/1064119X.2016.1273288

    Google Scholar 

  96. Liu, H.; Zhou, H.; Kong, G.; Qin, H.; Zha, Y.: High pressure jet-grouting column installation effect in soft soil: theoretical model and field application. Comput. Geotech. 88, 74–94 (2017)

    Article  Google Scholar 

  97. Wu, Y.D.; Diao, H.G.; Ng, C.W.W.; Liu, J.; Zeng, C.C.: Investigation of ground heave due to jet grouting in soft clay. J. Perform. Constr. Facil. 30(6), 06016003 (2016). doi:10.1061/(asce)cf.1943-5509.0000910

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Shuilong Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atangana Njock, P.G., Shen, J.S., Modoni, G. et al. Recent Advances in Horizontal Jet Grouting (HJG): An Overview. Arab J Sci Eng 43, 1543–1560 (2018). https://doi.org/10.1007/s13369-017-2752-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2752-3

Keywords

Navigation