Skip to main content
Log in

An Investigation of Geomechanical and Microstructural Properties of Full-Scale Jet Grout Column Constructed in Organic Soil

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Jet grouting methods have recently become one of the soil enhancement technologies utilized to provide strength improvement and solve most problems of weak soils. In this study, a full-scale 1 m diameter and 5 m length jet grout (soilcrete) column was constructed in the field with a water-to-cement ratio of 1 and 400 bar pressure injections. A mechanical, physical, and microstructural investigation was performed on jet grout samples taken from six different depths (0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 m) and at the same depth at five different locations, including the center. For normal conditions, samples were prepared for six periods to study dry and saturated conditions. The following tests are performed on each sample: compressive strength index (Is) in all conditions, water absorption, density, porosity, and interface friction. Additionally, SEM was performed on selected samples to investigate the microstructures of jet grout columns (JGCs). The test results showed that the Is varies with depth, and within the same depth, the variation is approximately 20%. Other properties also vary with depth and location; for example, the average percentage of water absorption and porosity are considered minimum values at the same location, which are 53 and 30%, respectively. However, the interface friction angle of organic soil–cement grout gains 48° and 10 kPa cohesion. The theoretical part of this study is to predict the diameter of JGC in organic soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

JGC:

Jet grout column

PC:

Portland cement

USCS:

Unified soil classification system

Is:

Compressive strength index

Ƞ :

Porosity

ρ :

Density

τ :

Shear stress

σ :

Normal stress

Φ :

Internal friction angle

c :

Cohesion

SEM:

Scanning electron microscopy

References

  1. Tiwari, S.K.; Kumawat, N.K.: Recent development in ground improvement techniques—a review. Int. J. Recent Dev. Eng. Technol. 2(3), 67–77 (2014)

    Google Scholar 

  2. Croce, P.; Flora, A.; Modoni, G.: Jet Grouting: Technology, Design and Control. CRC Press, Boca Raton (2014)

  3. Kirsch, K.; Bell, A.: Ground Improvement. CRC Press, Boca Raton (2012)

  4. Han, J.: Principles and practice of ground improvement. John Wiley \& Sons, Hoboken (2015)

  5. Tiwari, S.K., et al.: Jet grouting: technology, design and control. Int. J. Recent Dev. Eng. Technol. 2(3), 67–77 (2014)

    Google Scholar 

  6. Tinoco, J.; Correia, A.G.; Cortez, P.: A novel approach to predicting Young’s modulus of jet grouting laboratory formulations over time using data mining techniques. Eng. Geol. 169, 50–60 (2014)

    Article  Google Scholar 

  7. Busato, L., et al.: Combined geophysical surveys for the characterization of a reconstructed river embankment. Eng. Geol. 211, 74–84 (2016)

    Article  Google Scholar 

  8. Essler, R.: The design of jet grouting from concept to execution. Grout. Deep Mix. 2012, 2071–2081 (2012)

    Article  Google Scholar 

  9. Wang, Z.-F.; Shen, S.-L.; Yang, J.: Estimation of the diameter of jet-grouted column based on turbulent kinematic flow theory. Grout. Deep Mix 2012, 2044–2051 (2012)

    Article  Google Scholar 

  10. Erkan, I.H.; Tan, Ö.: The effect of pulling and rotation speed on the jet grout columns. Int. J. Civ. Environ. Eng. 10(12), 1690–1694 (2017)

    Google Scholar 

  11. Burke, G.K.: The state of the practice of jet grouting. Grout. Deep Mix 2012, 74–88 (2012)

    Article  Google Scholar 

  12. Njock, P.G.A.; Chen, J.; Modoni, G.; Arulrajah, A.; Kim, Y.H.: A review of jet grouting practice and development. Arab. J. Geosci. 11(16) (2018). Doi: https://doi.org/10.1007/s12517-018-3809-7.

  13. Jarret, R.L.: Effects of chemical growth retardants on growth and development of sweetpotato (Ipomoea batatas (L.) Lam.) in vitro. J. Plant Growth Regul. 16(4), 227–231 (1997)

    Article  Google Scholar 

  14. Magnan, J.P.: Methods to reduce the settlement of embankments on soft clay: a review. Vert. Horiz. Deform. Found. Embank. pp. 77–91 (1994)

  15. Huang, J.; Han, J.; Oztoprak, S.: Coupled mechanical and hydraulic modeling of geosynthetic-reinforced column-supported embankments. J. Geotech. Geoenvironmental Eng. 135(8), 1011–1021 (2009)

    Article  Google Scholar 

  16. Güllü, H.; Canakci, H.; Al Zangana, I.F.: Use of cement based grout with glass powder for deep mixing. Constr. Build. Mater. 137, 12–20 (2017)

  17. Ho, L.S.; Nakarai, K.; Ogawa, Y.; Sasaki, T.; Morioka, M.: Strength development of cement-treated soils: effects of water content, carbonation, and pozzolanic reaction under drying curing condition. Constr. Build. Mater. 134, 703–712 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.065

    Article  Google Scholar 

  18. Canakci, H.; Hamed, M.; Celik, F.; Sidik, W.; Eviz, F.: Friction characteristics of organic soil with construction materials. Soils Found. 56(6), 965–972 (2016)

    Article  Google Scholar 

  19. Uesugi, M.; Kishida, H.: Influential factors of friction between steel and dry sands. Soils Found. 26(2), 33–46 (1986)

    Article  Google Scholar 

  20. Lambe, T.V.: et Whitman R. V: Soil mechanics, SI version. J. Wiley Sons 1, 979 (1979)

    Google Scholar 

  21. Yoshimi, Y.; Kishida, T.: A ring torsion apparatus for evaluating friction between soil and metal surfaces. Geotech. Test. J. 4(4), 145–152 (1981)

    Article  Google Scholar 

  22. Carnevale, F.; Belloni, L.; Grassi, A.: Evaluation of diameter and characteristics of jet grouting columns-analytical approach. Grout. Deep Mix. 2012, 2061–2070 (2012)

    Article  Google Scholar 

  23. Coelho, S.; da Fonseca, A.V.; Cebola, D.; Anta, N.: The use of drilling parameters recording as a tool for quality control in jet grouting treatments. Grout. Deep Mix. 2012, 1484–1493 (2012)

    Article  Google Scholar 

  24. Thiyyakkandi, S.; McVay, M.; Bloomquist, D.; Lai, P.: Measured and predicted response of a new jetted and grouted precast pile with membranes in cohesionless soils. J. Geotech. Geoenviron. Eng. 139(8), 1334–1345 (2013)

    Article  Google Scholar 

  25. Flora, A.; Modoni, G.; Lirer, S.; Croce, P.: The diameter of single, double and triple fluid jet grouting columns: prediction method and field trial results. Géotechnique 63(11), 934–945 (2013)

    Article  Google Scholar 

  26. Croce, P.; Flora, A.: Analysis of single-fluid jet grouting. Geotechnique 50(6), 739–748 (2000)

    Article  Google Scholar 

  27. Goh, A.T.C.: Deterministic and reliability assessment of basal heave stability for braced excavations with jet grout base slab. Eng. Geol. 218, 63–69 (2017)

    Article  Google Scholar 

  28. Sujatha, A.; Govindaraju, L.; Shivakumar, N.; Devaraj, V.: Fuzzy knowledge based system for suitability of soils in airfield applications. Civ. Eng. J. 7(1), 140–152 (2021)

    Article  Google Scholar 

  29. Fazelabdolabadi, B.; Golestan, M.H.: Towards Bayesian quantification of permeability in micro-scale porous structures. HighTech Innov. J. 1(4), 148–160 (2020). https://doi.org/10.28991/hij-2020-01-04-02

    Article  Google Scholar 

  30. Kaur, A.; Singh, H.; Jha, J.N.: Numerical study of laterally loaded piles in soft clay overlying dense sand. Civ. Eng. J. 7(4), 730–746 (2021)

    Article  Google Scholar 

  31. ASTM: ASTM D2974–14 Standard Test Methods for Moisture , Ash , and Organic Matter of Peat and Other. Am. Soc. Test. Methods C, 1–4 (2014). Doi: https://doi.org/10.1520/D2974-14.obtaining.

  32. ASTM D4318, ASTM D 4318–10, and A. D4318–05: Standard test methods for liquid limit, plastic limit, and plasticity index of soils. Report 04, 1–14, (2005). March 2010. Doi: https://doi.org/10.1520/D4318-17E01.

  33. A. ASTM: C150/C150M-17, standard specification for Portland cement. Am. Soc. Test. Mater. West Conshohocken, PA, USA (2017)

  34. ASTM: Standard test method for determination of the point load strength index of rock 1. Rock Mech. 22(2), 1–9 (1985). Doi: https://doi.org/10.1520/D5731-16.methods.

  35. AASHTO T85: Standard test method for specific gravity and absorption of coarse aggregate. Am. Soc. Test. Mater., pp. 1–9 (2015). Doi: https://doi.org/10.1520/D6473-15.responsibility.

  36. ASTM C20–00: Standard Test methods for apparent porosity , water absorption , apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water,

  37. ASTM D3080: Standard test method for direct shear test of soils under consolidated drained conditions. ASTM Int., Conshohocken, PA, USA, pp. 343–351 (2011). Doi: https://doi.org/10.1520/D3080.

  38. Uddin, K.; Balasubramaniam, A.S.; Bergado, D.T.: Engineering behavior of cement-treated Bangkok soft clay. Geotech. Eng. 28, 89–119 (1997)

    Google Scholar 

  39. Nikbakhtan, B.; Osanloo, M.: Effect of grout pressure and grout flow on soil physical and mechanical properties in jet grouting operations. Int. J. Rock Mech. Min. Sci. 46(3), 498–505 (2009)

    Article  Google Scholar 

  40. Bayesteh H.; Sabermahani, M.: Field study on performance of jet grouting in low water content clay. Eng. Geol. 264, 105314 (2020)

  41. Tadio, L.: Physical and mechanical characteristics of soilcrete: the influence of cement content and clay inclusions (2016)

  42. Fang, Y.-S.; Liao, J.-J.; Lin, T.-K.: Mechanical properties of jet grouted soilcrete. Q. J. Eng. Geol. Hydrogeol. 27(3), 257–265 (1994)

    Article  Google Scholar 

  43. Kriker, A.; Debicki, G.; Bali, A.; Khenfer, M.M.; Chabannet, M.: Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cem. Concr. Compos. 27(5), 554–564 (2005)

    Article  Google Scholar 

  44. Zhao, Z.; Remond, S.; Damidot, D.; Xu, W.: Influence of hardened cement paste content on the water absorption of fine recycled concrete aggregates. J. Sustain. Cem. Mater. 2(3–4), 186–203 (2013)

    Google Scholar 

  45. Helson, O.; Beaucour, A.-L.; Eslami, J.; Noumowe, A.; Gotteland, P.: Physical and mechanical properties of soilcrete mixtures: Soil clay content and formulation parameters. Constr. Build. Mater. 131, 775–783 (2017)

    Article  Google Scholar 

  46. Tajudin, S.A.A.; Mohammad Azmi, M.A.; Shahidan, S.; Abidin, M.H.Z.; Madun, A.: Relationship of physical parameters in Pb-contaminated by stabilization/solidification method. MATEC Web Conf. 47 (2016). doi: https://doi.org/10.1051/matecconf/20164703015

  47. Carașca, O.: Soil improvement by mixing: techniques and performances. Energy Procedia 85, 85–92 (2016)

    Article  Google Scholar 

  48. Li, W.; O’Kelly, B.C.; Yang, M.; Fang, K.: Compressibility behaviour and properties of peaty soils from Dian-Chi Lake area, China. Eng. Geol. 277, 105778 (2020)

  49. Sun, L.-Z.; Huang, Z.-P.: Dynamic void growth in rate-sensitive plastic solids. Int. J. Plast. 8(8), 903–924 (1992)

    Article  Google Scholar 

  50. Consoli, N.C.; Rosa, D.A.; Cruz, R.C.; Dalla Rosa, A.: Water content, porosity and cement content as parameters controlling strength of artificially cemented silty soil. Eng. Geol. 122(3–4):328–333 (2011)

  51. Chu, L.-M.; Yin, J.H.: Study on soil–cement grout interface shear strength of soil nailing by direct shear box testing method. Geomech. Geoengin. An Int. J. 1(4), 259–273 (2006)

    Article  Google Scholar 

  52. Kolovos, K.G.; Asteris, P.G.; Cotsovos, D.M.; Badogiannis, E.; Tsivilis, S.: Mechanical properties of soilcrete mixtures modified with metakaolin. Constr. Build. Mater. 47, 1026–1036 (2013)

    Article  Google Scholar 

  53. Shen, S.-L.; Wang, Z.-F.; Horpibulsuk, S.; Kim, Y.-H.: Jet grouting with a newly developed technology: the twin-jet method. Eng. Geol. 152(1), 87–95 (2013)

    Article  Google Scholar 

  54. Mass, D. : Standard test method for laboratory determination of the fiber content of peat. Methods 04, 4–5, (2001). Doi: https://doi.org/10.1520/D1997-13.2. June 1991

  55. ASTM D2976: Standard test method for pH of peat materials. ASTM Int. 71, 1–2 (2015). Doi: https://doi.org/10.1520/D2976-71R04.2.

Download references

Acknowledgements

The experimental study of this present paper has been conducted at the Civil Engineering Laboratory of University of Gaziantep, through the Ph.D. thesis of First author. The authors would like to present their gratitude to the anonymous reviewers for carefully reviewing the manuscript and providing valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanifi Canakci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.F., Canakci, H. An Investigation of Geomechanical and Microstructural Properties of Full-Scale Jet Grout Column Constructed in Organic Soil. Arab J Sci Eng 47, 4605–4621 (2022). https://doi.org/10.1007/s13369-021-06189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06189-z

Keywords

Navigation