Skip to main content

Microfluidic Devices and Their Applications

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Microfluidics and nanofluidics is a field of science that operates in the micrometer and nanometer scale. A microfluidic–nanofluidic device consists of components such as valves, pumps and mixers for manipulating and transporting the fluid at this scale. In this chapter we review the history, physics, fabrication methods and applications of microfluidics and nanofluidics. This interdisciplinary field has a wide range of application areas including environmental sensing, medical diagnostics, drug discovery, drug delivery, microscale chemical production, combinatorial synthesis and assays, artificial organs, and micropropulsion, microscale energy systems. The global market for microfluidic devices was estimated at around $3.1 billion dollars in 2015 and is expected to rise to $7.5 billion dollars by 2020. In the future, microfluidics and nanofluidics will see miniaturization and development of novel microfabrication techniques along with more sensitive detection methods and diagnosis of diseases in a point-of-care platform. Developments in the fundamental physics of fluid flow and its control, microfabrication methods, microfluidic components, and applications in new and emerging areas are all anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.J. Beebe, G.A. Mensing, G.M. Walker: Physics and applications of microfluidics in biology, Annu. Rev. Biomed. Eng. 4, 261–286 (2002)

    Google Scholar 

  2. A. Manz, N. Graber, H.M. Widmer: Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sens. Actuat. B: Chem. 1, 244–248 (1990)

    Google Scholar 

  3. E.H. Yoo, S.Y. Lee: Glucose Biosensors: An overview of use in clinical practice, Sensors (Basel) 10, 4558–4576 (2010)

    Google Scholar 

  4. Y. Feng, Y. Zhang, C. Ying, D. Wang, C. Du: Nanopore-based fourth-generation DNA sequencing technology, Genom. Proteom. Bioinform. 13, 4–16 (2015)

    Google Scholar 

  5. MarketsandMarkets: Microfluidics market by application, material, diagnostic end user-2020, http://www.marketsandmarkets.com/Market-Reports/microfluidics-market-1305.html (2016)

  6. Cepheid Inc.: Cepheid geneXpert IV, http://www.cepheid.com/us/cepheid-solutions/systems/genexpert-systems/genexpert-iv (2016)

  7. D.D. Dalma-Weiszhausz, J. Warrington, E.Y. Tanimoto, C.G. Miyada: The affymetrix genechip platform: An overview, Methods Enzymol 410, 3–28 (2006)

    Google Scholar 

  8. F.F. Reuss: Sur un nouvel effet de l’electricite galvanique, Mem. Soc. Imp. Nat. Mosc. 2, 327–337 (1809)

    Google Scholar 

  9. S.C. Terry, J.H. Jerman, J.B. Angell: A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE Trans. Electron. Devices 26, 1880–1886 (1979)

    Google Scholar 

  10. J.K. Fink: Inkjet inks. In: The Chemistry of Printing Inks and Their Electronics and Medical Applications, ed. by M. Scrivener (Wiley, New York 2014) pp. 1–10

    Chapter  Google Scholar 

  11. Yole Développement: Inkjet printhead market technology trends (2016)

    Google Scholar 

  12. S.P. Fodor, R.P. Rava, X.C. Huang, A.C. Pease, C.P. Holmes, C.L. Adams: Multiplexed biochemical assays with biological chips, Nature 364, 555–556 (1993)

    Google Scholar 

  13. Kalorama Information (Market Research Group), LLC: Market research report, http://www.kaloramainformation.com/Microarrays-9618385 (2016)

  14. D.R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz: Micro total analysis systems. 1. Introduction, theory and technology, Anal. Chem. 74, 2623–2636 (2002)

    Google Scholar 

  15. C.T. Culbertson, T.G. Mickleburgh, S.A. Stewart-James, K.A. Sellens, M. Pressnall: Micro total analysis systems: Fundamental advances and biological applications, Anal. Chem. 86, 95–118 (2014)

    Google Scholar 

  16. M.L. Kovarik, D.M. Ornoff, A.T. Melvin, N.C. Dobes, Y. Wang, A.J. Dickinson, P.C. Gach, P.K. Shah, N.L. Allbritton: Micro total analysis systems: Fundamental advances and applications in the laboratory, clinic, and field, Anal. Chem. 85, 451–472 (2013)

    Google Scholar 

  17. D.E.W. Patabadige, S. Jia, J. Sibbitts, J. Sadeghi, K. Sellens, C.T. Culbertson: Micro total analysis systems: Fundamental advances and applications, Anal. Chem. 88, 320–338 (2016)

    Google Scholar 

  18. A.J. Tudos, G.J. Besselink, R.B. Schasfoort: Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry, Lab Chip 1, 83–95 (2001)

    Google Scholar 

  19. M. A. Northrup, M.T. Ching, R.M. Whlte, R.T. Watson: Proc. Transducers '93, Yokohama, Japan, (1993), p. 924

    Google Scholar 

  20. A.T. Woolley, D. Hadley, P. Landre, A.J. deMello, R.A. Mathies, M.A. Northrup: Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device, Anal. Chem. 68, 4081–4086 (1996)

    Google Scholar 

  21. M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke: An integrated nanoliter DNA analysis device, Science 282, 484–487 (1998)

    Google Scholar 

  22. H. Becker, L.E. Locascio: Polymer microfluidic devices, Talanta 56, 267–287 (2002)

    Google Scholar 

  23. Y. Xia, G.M. Whitesides: Soft lithography, Angew. Chem. Int. Edn. 37, 550–575 (1998)

    Google Scholar 

  24. M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake: Monolithic microfabricated valves and pumps by multilayer soft lithography, Science 288, 113–116 (2000)

    Google Scholar 

  25. S. Quake: A nanoliter rotary device for polymerase chain reaction, Electrophoresis 23, 1531–1536 (2002)

    Google Scholar 

  26. Y.-C. Wang, M.H. Choi, J. Han: Two-dimensional protein separation with advanced sample and buffer isolation using microfluidic valves, Anal. Chem. 76, 4426–4431 (2004)

    Google Scholar 

  27. A.Y. Fu, H.-P. Chou, C. Spence, F.H. Arnold, S.R. Quake: An integrated microfabricated cell sorter, Anal. Chem. 74, 2451–2457 (2002)

    Google Scholar 

  28. V. Studer, R. Jameson, E. Pellereau, A. Pepin, Y. Chen: A microfluidic mammalian cell sorter based on fluorescence detection, Microelectron. Eng. 73, 852–857 (2004)

    Google Scholar 

  29. D. Lipomi, R. Martinez, L. Cademartiri, G. Whitesides: Soft lithographic approaches to nanofabrication. In: Polym. Sci. Compr. Ref., Vol. 10 (2012) pp. 211–231

    Google Scholar 

  30. P. Kim, K.W. Kwon, M.C. Park, S.H. Lee, S.M. Kim, K.Y. Suh: Soft lithography for microfluidics: A review, Biochip J 2, 1–11 (2008)

    Google Scholar 

  31. D. Qin, Y. Xia, G.M. Whitesides: Soft lithography for micro- and nanoscale patterning, Nat. Protoc. 5, 491–502 (2010)

    Google Scholar 

  32. G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber: Soft lithography in biology and biochemistry, Annu. Rev. Biomed. Eng. 3, 335–373 (2001)

    Google Scholar 

  33. H.A. Stone, A.D. Stroock, A. Ajdari: Engineering flows in small devices: Microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech. 36, 381–411 (2004)

    MATH  Google Scholar 

  34. G.F. Christopher, S.L. Anna: Microfluidic methods for generating continuous droplet streams, J. Phys. D: Appl. Phys. 40, R319 (2007)

    Google Scholar 

  35. P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides: Formation of droplets and bubbles in a microfluidic T-junction – scaling and mechanism of break-up, Lab Chip 6, 437–446 (2006)

    Google Scholar 

  36. P. Tabeling: Introduction to Microfluidics (Oxford Univ. Press, Oxford 2005)

    Google Scholar 

  37. J. Atencia, D.J. Beebe: Controlled microfluidic interfaces, Nature 437, 648–655 (2005)

    Google Scholar 

  38. C.N. Baroud, F. Gallaire, R. Dangla: Dynamics of microfluidic droplets, Lab Chip 10, 2032–2045 (2010)

    Google Scholar 

  39. H.N. Joensson, H. Andersson Svahn: Droplet Microfluidics – A tool for single-cell analysis, Angew. Chem. Int. Edn. 51, 12176–12192 (2012)

    Google Scholar 

  40. S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee: Droplet microfluidics, Lab Chip 8, 198–220 (2008)

    Google Scholar 

  41. Z. Guan, Y. Zou, M. Zhang, J. Lv, H. Shen, P. Yang, H. Zhang, Z. Zhu, C.J. Yang: A highly parallel microfluidic droplet method enabling single-molecule counting for digital enzyme detection, Biomicrofluidics 8, 014110 (2014)

    Google Scholar 

  42. C. Benz, H. Retzbach, S. Nagl, D. Belder: Protein-protein interaction analysis in single microfluidic droplets using FRET and fluorescence lifetime detection, Lab Chip 13, 2808–2814 (2013)

    Google Scholar 

  43. J.W. Park, S.C. Na, T.Q. Nguyen, S.M. Paik, M. Kang, D. Hong, I.S. Choi, J.H. Lee, N.L. Jeon: Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research, Biotechnol. Bioeng. 112, 494–501 (2015)

    Google Scholar 

  44. W. Li, H. Dong, G. Tang, T. Ma, X. Cao: Controllable microfluidic fabrication of Janus and microcapsule particles for drug delivery applications, RSC Adv 5, 23181–23188 (2015)

    Google Scholar 

  45. C.H. Yang, C.Y. Wang, A.M. Grumezescu, A.H. Wang, C.J. Hsiao, Z.Y. Chen, K.S. Huang: Core-shell structure microcapsules with dual pH-responsive drug release function, Electrophoresis 35, 2673–2680 (2014)

    Google Scholar 

  46. N. Bardiya, J.-W. Choi, S.-I. Chang: Analysis of single nucleotide polymorphism in human angiogenin using droplet-based microfluidics, BioChip J 8, 15–21 (2014)

    Google Scholar 

  47. J. Shuga, Y. Zeng, R. Novak, Q. Lan, X. Tang, N. Rothman, R. Vermeulen, L. Li, A. Hubbard, L. Zhang, R.A. Mathies, M.T. Smith: Single molecule quantitation and sequencing of rare translocations using microfluidic nested digital PCR, Nucl. Acids Res. 41, e159 (2013)

    Google Scholar 

  48. N. Chronis, M. Zimmer, C.I. Bargmann: Microfluidics for in vivo imaging of neuronal and behavioral activity in caenorhabditis elegans, Nat. Methods 4, 727–731 (2007)

    Google Scholar 

  49. K. Chung, M.M. Crane, H. Lu: Automated on-chip rapid microscopy, phenotyping and sorting of C. Elegans, Nat. Methods 5, 637–643 (2008)

    Google Scholar 

  50. P. Rezai, A. Siddiqui, P.R. Selvaganapathy, B.P. Gupta: Electrotaxis of Caenorhabditis elegans in a microfluidic environment, Lab Chip 10, 220–226 (2010)

    Google Scholar 

  51. K. Chung, Y. Kim, J.S. Kanodia, E. Gong, S.Y. Shvartsman, H. Lu: A microfluidic array for large-scale ordering and orientation of embryos, Nat. Methods 8, 171–176 (2011)

    Google Scholar 

  52. R. Ghaemi, P. Rezai, B.G. Iyengar, P.R. Selvaganapathy: Microfluidic devices for imaging neurological response of drosophila melanogaster larva to auditory stimulus, Lab Chip 15, 1116–1122 (2015)

    Google Scholar 

  53. E.M. Lucchetta, J.H. Lee, L.A. Fu, N.H. Patel, R.F. Ismagilov: Dynamics of drosophila embryonic patterning network perturbed in space and time using microfluidics, Nature 434, 1134–1138 (2005)

    Google Scholar 

  54. Y.C. Shen, D. Li, A. Al-Shoaibi, T. Bersano-Begey, H. Chen, S. Ali, B. Flak, C. Perrin, M. Winslow, H. Shah, P. Ramamurthy, R.H. Schmedlen, S. Takayama, K.F. Barald: A student team in a University of Michigan biomedical engineering design course constructs a microfluidic bioreactor for studies of zebrafish development, Zebrafish 6, 201–213 (2009)

    Google Scholar 

  55. L.L. Bischel, B.R. Mader, J.M. Green, A. Huttenlocher, D.J. Beebe: Zebrafish entrapment by restriction array (ZEBRA) device: A low-cost, agarose-free zebrafish mounting technique for automated imaging, Lab Chip 13, 1732–1736 (2013)

    Google Scholar 

  56. F. Yang, C. Gao, P. Wang, G.-J. Zhang, Z. Chen: Fish-on-a-chip: Microfluidics for zebrafish research, Lab Chip 16, 1106–1125 (2016)

    Google Scholar 

  57. S.N. Bhatia, D.E. Ingber: Microfluidic organs-on-chips, Nature 201, 4 (2014)

    Google Scholar 

  58. E.W. Esch, A. Bahinski, D. Huh: Organs-on-chips at the frontiers of drug discovery, Nat. Rev. Drug Discov. 14, 248–260 (2015)

    Google Scholar 

  59. I.M. Derrington, T.Z. Butler, M.D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, J.H. Gundlach: Nanopore DNA sequencing with MspA, Proc. Nat. Acad. Sci. 107, 16060–16065 (2010)

    Google Scholar 

  60. A.M. Streets, Y. Huang: Microfluidics for biological measurements with single-molecule resolution, Curr. Opin. Biotechnol. 25, 69–77 (2014)

    Google Scholar 

  61. C. Liu, Y. Qu, Y. Luo, N. Fang: Recent advances in single-molecule detection on micro- and nano-fluidic devices, Electrophoresis 32, 3308–3318 (2011)

    Google Scholar 

  62. J. Fu, R.B. Schoch, A.L. Stevens, S.R. Tannenbaum, J. Han: A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins, Nat. Nanotechnol. 2, 121–128 (2007)

    Google Scholar 

  63. S. Prakash, J. Yeom: Energy and environmental applications. In: Nanofluidics and Microfluidics, ed. by W. Andrew (Elsevier, Oxford 2014) pp. 241–269

    Chapter  Google Scholar 

  64. F.M. White, I. Corfield: Viscous Fluid Flow (McGraw-Hill, New York 2006)

    Google Scholar 

  65. R.A. Freitas: Nanomedicine, Basic Capabilities, Vol. I (Landes Bioscience Georgetown, Oxford 1999)

    Google Scholar 

  66. D.L. Englert, M.D. Manson, A. Jayaraman: Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients, Appl. Environ. Microbiol. 75, 4557–4564 (2009)

    Google Scholar 

  67. J. Oakey, J. Allely, D.W. Marr: Laminar-flow-based separations at the microscale, Biotechnol. Prog. 18, 1439–1442 (2002)

    Google Scholar 

  68. A. Hatch, A.E. Kamholz, K.R. Hawkins, M.S. Munson, E.A. Schilling, B.H. Weigl, P. Yager: A rapid diffusion immunoassay in a T-sensor, Nat. Biotechnol. 19, 461–465 (2001)

    Google Scholar 

  69. V. Hessel, H. Löwe, F. Schönfeld: Micromixers – A review on passive and active mixing principles, Chem. Eng. Sci. 60, 2479–2501 (2005)

    Google Scholar 

  70. N.-T. Nguyen, Z. Wu: Micromixers – A review, J. Micromech. Microeng. 15(2), R1 (2005)

    Google Scholar 

  71. X. Xuan, D. Li: Analytical study of joule heating effects on electrokinetic transportation in capillary electrophoresis, J. Chromatogr. A 1064, 227–237 (2005)

    Google Scholar 

  72. M.U. Kopp, A.J. De Mello, A. Manz: Chemical amplification: Continuous-flow PCR on a chip, Science 280, 1046–1048 (1998)

    Google Scholar 

  73. W.L. Tong, M.K. Tan, J.K. Chin, K.S. Ong, Y.M. Hung: Coupled effects of hydrophobic layer and vibration on thermal efficiency of two-phase closed thermosyphons, RSC Adv 5, 10332–10340 (2015)

    Google Scholar 

  74. A.A. Darhuber, S.M. Troian: Principles of microfluidic actuation by modulation of surface stresses, Annu. Rev. Fluid Mech. 37, 425–455 (2005)

    MathSciNet  MATH  Google Scholar 

  75. Z. Stojek: The electrical double layer and its structure. In: Electroanalytical Methods, ed. by F. Scholz (Springer, Berlin, Heidelberg 2010) pp. 3–9

    Google Scholar 

  76. S. Zeng, C.-H. Chen, J.C. Mikkelsen, J.G. Santiago: Fabrication and characterization of electroosmotic micropumps, Sens. Actuat. B: Chem. 79, 107–114 (2001)

    Google Scholar 

  77. P.H. Paul, D.W. Arnold, D.J. Rakestraw: Electrokinetic generation of high pressures using porous microstructures. In: Micro Total Analysis Systems, ed. by D.J. Harrison, A. van den Berg (Springer, Dordrecht 1998) pp. 49–52

    Google Scholar 

  78. P.H. Paul, D.J. Rakestraw, D.W. Arnold, K.R. Hencken, J.S. Schoeniger, D.W. Neyes: Electrokinetic high pressure hydraulic system, US Patent (Application) 6277257 B1 (2001)

    Google Scholar 

  79. S. Fiedler, S.G. Shirley, T. Schnelle, G. Fuhr: Dielectrophoretic sorting of particles and cells in a microsystem, Anal. Chem. 70, 1909–1915 (1998)

    Google Scholar 

  80. J.G. Kralj, M.T. Lis, M.A. Schmidt, K.F. Jensen: Continuous dielectrophoretic size-based particle sorting, Anal. Chem. 78, 5019–5025 (2006)

    Google Scholar 

  81. K. Ahn, C. Kerbage, T.P. Hunt, R. Westervelt, D.R. Link, D. Weitz: Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices, Appl. Phys. Lett. 88, 24104–24104 (2006)

    Google Scholar 

  82. S. Zeng, B. Li, X. Su, J. Qin, B. Lin: Microvalve-actuated precise control of individual droplets in microfluidic devices, Lab Chip 9, 1340–1343 (2009)

    Google Scholar 

  83. Z.Z. Chong, S.H. Tan, A.M. Ganan-Calvo, S.B. Tor, N.H. Loh, N.T. Nguyen: Active droplet generation in microfluidics, Lab on a Chip 16, 35–58 (2016)

    Google Scholar 

  84. H. Gu, M.H. Duits, F. Mugele: Droplets formation and merging in two-phase flow microfluidics, Int. J. Mol. Sci. 12, 2572–2597 (2011)

    Google Scholar 

  85. T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake: Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86, 4163–4166 (2001)

    Google Scholar 

  86. S.L. Anna, N. Bontoux, H.A. Stone: Formation of dispersions using flow focusing in microchannels, Appl. Phys. lett. 82, 364–366 (2003)

    Google Scholar 

  87. L. Yobas, S. Martens, W.-L. Ong, N. Ranganathan: High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets, Lab on a Chip 6, 1073–1079 (2006)

    Google Scholar 

  88. C. Cramer, P. Fischer, E.J. Windhab: Drop formation in a co-flowing ambient fluid, Chem. Eng. Sci. 59, 3045–3058 (2004)

    Google Scholar 

  89. D.J. Collins, A. Neild, A. de Mello, A.-Q. Liu, Y. Ai: The Poisson distribution and beyond: Methods for microfluidic droplet production and single all encapsulation, Lab Chip 15, 3439–3459 (2015)

    Google Scholar 

  90. H. Song, M.R. Bringer, J.D. Tice, C.J. Gerdts, R.F. Ismagilov: Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels, Appl. Phys. Lett. 83, 4664–4666 (2003)

    Google Scholar 

  91. D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, M. Marquez, D.A. Weitz: Electric control of droplets in microfluidic devices, Angew. Chem. Int. Edn. 45, 2556–2560 (2006)

    Google Scholar 

  92. D. Link, S.L. Anna, D. Weitz, H. Stone: Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett. 92, 054503 (2004)

    Google Scholar 

  93. A.T.-H. Hsieh, N. Hori, R. Massoudi, P.J.-H. Pan, H. Sasaki, Y.A. Lin, A.P. Lee: Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery, Lab on a Chip 9, 2638–2643 (2009)

    Google Scholar 

  94. Y.-C. Tan, Y.L. Ho, A.P. Lee: Microfluidic sorting of droplets by size, Microfluid. Nanofluidics 4, 343–348 (2008)

    Google Scholar 

  95. M. Srisa-Art, I.C. Bonzani, A. Williams, M.M. Stevens: A.J. deMello, J.B. Edel: Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics, Analyst 134, 2239–2245 (2009)

    Google Scholar 

  96. J.C. Baret, Y. Beck, I. Billas-Massobrio, D. Moras, A.D. Griffiths: Quantitative cell-based reporter gene assays using droplet-based microfluidics, Chem. Biol. 17, 528–536 (2010)

    Google Scholar 

  97. E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J.B. Hutchison, J.M. Rothberg, D.R. Link, N. Perrimon, M.L. Samuels: Droplet microfluidic technology for single-cell high-throughput screening, Proc. Nat. Acad. Sci. 106, 14195–14200 (2009)

    Google Scholar 

  98. S. McNamara, Y.B. Gianchandani: On-chip vacuum generated by a micromachined Knudsen pump, J. Microelectromech. Syst. 14, 741–746 (2005)

    Google Scholar 

  99. W. Reisner, J.N. Pedersen, R.H. Austin: DNA confinement in nanochannels: Physics and biological applications, Rep. Prog. Phys. 75, 106601 (2012)

    Google Scholar 

  100. T.-C. Kuo, D.M. Cannon, Y. Chen, J.J. Tulock, M.A. Shannon, J.V. Sweedler, P.W. Bohn: Gateable nanofluidic interconnects for multilayered microfluidic separation systems, Anal. Chem. 75, 1861–1867 (2003)

    Google Scholar 

  101. S.A. Gajar, M.W. Geis: An ionic liquid-channel field-effect transistor, J. Electrochem. Soc. 139, 2833–2840 (1992)

    Google Scholar 

  102. P. Abgrall, N.T. Nguyen: Nanofluidic devices and their applications, Anal. Chem. 80, 2326–2341 (2008)

    Google Scholar 

  103. M.A. Gijs: Device physics: Will fluidic electronics take off?, Nat. Nanotechnol. 2, 268–270 (2007)

    Google Scholar 

  104. A. Manz, D.J. Harrison, E.M. Verpoorte, J.C. Fettinger, A. Paulus, H. Lüdi, H.M. Widmer: Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip, J. Chromatogr. A 593, 253–258 (1992)

    Google Scholar 

  105. C. Iliescu, H. Taylor, M. Avram, J. Miao, S. Franssila: A practical guide for the fabrication of microfluidic devices using glass and silicon, Biomicrofluidics 6, 016505 (2012)

    Google Scholar 

  106. G.T. Kovacs, N.I. Maluf, K.E. Petersen: Bulk micromachining of silicon, Proc. IEEE 86, 1536–1551 (1998)

    Google Scholar 

  107. C.D. James, M. Okandan, S.S. Mani, P.C. Galambos, R. Shul: Monolithic surface micromachined fluidic devices for dielectrophoretic preconcentration and routing of particles, J. Micromech. Microeng. 16, 1909 (2006)

    Google Scholar 

  108. M.J. de Boer, R.W. Tjerkstra, J. Berenschot, H.V. Jansen, G. Burger, J. Gardeniers, M. Elwenspoek, A. van den Berg: Micromachining of buried micro channels in silicon, J. Microelectromech. Syst. 9, 94–103 (2000)

    Google Scholar 

  109. S.-J. Paik, S. Byun, J.-M. Lim, Y. Park, A. Lee, S. Chung, J. Chang, K. Chun: In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems, Sens. Actuat. A: Phys. 114, 276–284 (2004)

    Google Scholar 

  110. N.-T. Nguyen, S.T. Wereley: Fundamentals and Applications of Microfluidics (Artech House, Norwood 2002)

    MATH  Google Scholar 

  111. W.I. Wu, P. Rezai, H.H. Hsu, P.R. Selvaganapathy: Materials and methods for the microfabrication of microfluidic biomedical devices. In: Microfluidic Devices for Biomedical Applications, ed. by X.-J.J. Li, Y. Zhou (2013) pp. 3–62

    Google Scholar 

  112. D.J. Laser, J.G. Santiago: A review of micropumps, J. Micromech. Microeng. 14, R35 (2004)

    Google Scholar 

  113. K.W. Oh, C.H. Ahn: A review of microvalves, J. Micromech. Microeng. 16, R13 (2006)

    Google Scholar 

  114. R. Tiggelaar, P. Van Male, J. Berenschot, J. Gardeniers, R. Oosterbroek, M. De Croon, J. Schouten, A.M. Van Den Berg: Elwenspoek: Fabrication of a high-temperature microreactor with integrated heater and sensor patterns on an ultrathin silicon membrane, Sens. Actuat. A: Phys. 119, 196–205 (2005)

    Google Scholar 

  115. Y. Nakashima, T. Yasuda: Cell differentiation guidance using chemical stimulation controlled by a microfluidic device, Sens. Actuat. A: Phys. 139, 252–258 (2007)

    Google Scholar 

  116. E.G. Lavoie, T. Wangdi, B.I. Kazmierczak: Innate immune responses to Pseudomonas aeruginosa infection, Microbes Infect 13, 1133–1145 (2011)

    Google Scholar 

  117. M.A. Hopcroft, W.D. Nix, T.W. Kenny: What is the young’s modulus of silicon?, J. Microelectromech. Syst. 19, 229–238 (2010)

    Google Scholar 

  118. K. Yamada, T.G. Henares, K. Suzuki, D. Citterio: Paper-based inkjet-printed microfluidic analytical devices, Angew. Chem. Int. Edn. 54, 5294–5310 (2015)

    Google Scholar 

  119. R.R. Anderson, W. Hu, J.W. Noh, W.C. Dahlquist, S.J. Ness, T.M. Gustafson, D.C. Richards, S. Kim, B.A. Mazzeo, A.T. Woolley: Transient deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS) microfluidics, Lab on a Chip 11, 2088–2096 (2011)

    Google Scholar 

  120. M.-A. Grétillat, F. Paoletti, P. Thiébaud, S. Roth, M. Koudelka-Hep, N. De Rooij: A new fabrication method for borosilicate glass capillary tubes with lateral inlets and outlets, Sens. Actuat. A 60, 219–222 (1997)

    Google Scholar 

  121. F. Gretillat, M.-A. Gretillat, N.F. de Rooij: Improved design of a silicon micromachined gyroscope with piezoresistive detection and electromagnetic excitation, J. Microelectromech. Syst. 8, 243–250 (1999)

    Google Scholar 

  122. C. Iliescu, B. Chen: Thick and low-stress PECVD amorphous silicon for MEMS applications, J. Micromech. Microeng. 18, 015024 (2007)

    Google Scholar 

  123. J. Brugger, G. Beljakovic, M. Despont, N. De Rooij, P. Vettiger: Silicon micro-nanomechanical device fabrication based on focused ion beam surface modification and KOH etching, Microeleetronic Eng 35, 401–404 (1997)

    Google Scholar 

  124. J.S. You, D. Kim, J.Y. Huh, H.J. Park, J.J. Pak, C.S. Kang: Experiments on anisotropic etching of Si in TMAH, Sol. Energy Mater. Sol. Cells 66, 37–44 (2001)

    Google Scholar 

  125. G. Spierings: Wet chemical etching of silicate glasses in hydrofluoric acid based solutions, J. Mater. Sci. 28, 6261–6273 (1993)

    Google Scholar 

  126. U. Gösele, Q.-Y. Tong: Semiconductor wafer bonding, Annu. Rev. Mater. Sci. 28, 215–241 (1998)

    Google Scholar 

  127. M.A. Schmidt: Wafer-to-wafer bonding for microstructure formation, Proc. IEEE 86, 1575–1585 (1998)

    Google Scholar 

  128. V.I. Chin, P. Taupin, S. Sanga, J. Scheel, F.H. Gage, S.N. Bhatia: Microfabricated platform for studying stem cell fates, Biotechnol. Bioeng. 88, 399–415 (2004)

    Google Scholar 

  129. E.T. Lagally, P.C. Simpson, R.A. Mathies: Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system, Sens. Actuat. B 63, 138–146 (2000)

    Google Scholar 

  130. A.C. Lewis, J.F. Hamilton, C.N. Halliday, J. Rhodes, K.D. Bartle, P. Homewood, R.J. Grenfell, B. Goody, A.M. Harling, P. Brewer: Microfabricated planar glass gas chromatography with photoionization detection, J. Chromatogra. A 1217, 768–774 (2010)

    Google Scholar 

  131. G.M. Whitesides: The origins and the future of microfluidics, Nature 442, 368–373 (2006)

    Google Scholar 

  132. A. Plecis, Y. Chen: Fabrication of microfluidic devices based on glass–PDMS–glass technology, Microelectron. Eng. 84, 1265–1269 (2007)

    Google Scholar 

  133. D. Mijatovic, J. Eijkel, A. Van Den Berg: Technologies for nanofluidic systems: Top-down versus bottom up – a review, Lab on a Chip 5, 492–500 (2005)

    Google Scholar 

  134. F.H. Labeed, H.O. Fatoyinbo: Microfluidics in Detection Science: Lab-on-a-Chip Technologies (Royal Society of Chemistry, London 2014)

    Google Scholar 

  135. J. Friend, L. Yeo: Fabrication of microfluidic devices using polydimethylsiloxane, Biomicrofluidics 4, 026502 (2010)

    Google Scholar 

  136. J.C. McDonald, G.M. Whitesides: Poly (dimethylsiloxane) as a material for fabricating microfluidic devices, Accounts Chem. Res. 35, 491–499 (2002)

    Google Scholar 

  137. N. Lobontiu, E. Garcia: Mechanics of Microelectromechanical Systems (Springer, New York 2004)

    Google Scholar 

  138. H. Becker, C. Gärtner: Polymer microfabrication technologies for microfluidic systems, Anal. Bioanal. Chem. 390, 89–111 (2008)

    Google Scholar 

  139. D.C. Duffy, J.C. McDonald, O.J. Schueller, G.M. Whitesides: Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem. 70, 4974–4984 (1998)

    Google Scholar 

  140. J.C. McDonald, S.J. Metallo, G.M. Whitesides: Fabrication of a configurable, single-use microfluidic device, Anal. Chem. 73, 5645–5650 (2001)

    Google Scholar 

  141. T. Yang, S. Jung, H. Mao, P.S. Cremer: Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays, Anal. Chem. 73, 165–169 (2001)

    Google Scholar 

  142. R.S. Martin, A.J. Gawron, S.M. Lunte: Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips, Anal. Chem. 72, 3196–3202 (2000)

    Google Scholar 

  143. A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides: Patterned paper as a platform for inexpensive, low-volume, portable bioassays, Angew. Chem. Int. Edn. 46, 1318–1320 (2007)

    Google Scholar 

  144. S. Bhattacharya, A. Datta, J.M. Berg, S. Gangopadhyay: Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength, J. Microelectromech. Syst. 14, 590–597 (2005)

    Google Scholar 

  145. P. Rezai, P.R. Selvaganapathy, G.R. Wohl: Plasma enhanced bonding of polydimethylsiloxane with parylene and its optimization, J. Micromech. Microeng. 21, 065024 (2011)

    Google Scholar 

  146. J. Soo Ko, H.C. Yoon, H. Yang, H.B. Pyo, K. Hyo Chung, S.K. Jin, Y.K. Tae: A polymer-based microfluidic device for immunosensing biochips, Lab Chip 3, 106–113 (2003)

    Google Scholar 

  147. M.A. Eddings, M.A. Johnson, B.K. Gale: Determining the optimal PDMS–PDMS bonding technique for microfluidic devices, J. Micromech. Microeng. 18, 067001 (2008)

    Google Scholar 

  148. P. Rezai, P.R. Selvaganapathy, G.R. Wohl: Plasma enhanced bonding of polydimethylsiloxane (PDMS) with parylene. In: Proc. 16th Int. Solid-State Sens., Actuat. Microsyst. Conf. (2011) pp. 1340–1343

    Chapter  Google Scholar 

  149. M. Atai, L. Solhi, A. Nodehi, S.M. Mirabedini, S. Kasraei, K. Akbari, S. Babanzadeh: PMMA-grafted nanoclay as novel filler for dental adhesives, Dent. Mater. 25, 339–347 (2009)

    Google Scholar 

  150. P.C. Nicolson, J. Vogt: Soft contact lens polymers: An evolution, Biomaterials 22, 3273–3283 (2001)

    Google Scholar 

  151. S.B. Kim, Y.J. Kim, T.L. Yoon, S.A. Park, I.H. Cho, E.J. Kim, I.A. Kim, J.W. Shin: The characteristics of a hydroxyapatite-chitosan-PMMA bone cement, Biomaterials 25, 5715–5723 (2004)

    Google Scholar 

  152. M.B. Wabuyele, S.M. Ford, W. Stryjewski, J. Barrow, S.A. Soper: Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices, Electrophoresis 22, 3939–3948 (2001)

    Google Scholar 

  153. G. Jenkins, C.D. Mansfield: Microfluidic Diagnostics: Methods and Protocols (Humana, Totowa 2013)

    Google Scholar 

  154. M. Heckele, W. Bacher, D.K. Müller: Hot embossing – The molding technique for plastic microstructures, Microsyst. Technol. 4, 122–124 (1998)

    Google Scholar 

  155. J. Liu, L. Wang, W. Ouyang, W. Wang, J. Qin, Z. Xu, S. Xu, D. Ge, L. Wang, C. Liu, L. Wang: Fabrication of PMMA nanofluidic electrochemical chips with integrated microelectrodes, Biosens. Bioelectron. 72, 288–293 (2015)

    Google Scholar 

  156. G. Julien, C. Thierry, M. Patrice: Microinjection molding of thermoplastic polymers: A review, J. Micromech. Microeng. 17, R96 (2007)

    Google Scholar 

  157. S.A. Soper, S.M. Ford, S. Qi, R.L. McCarley, K. Kelly, M.C. Murphy: Peer reviewed: Polymeric microelectromechanical systems, Anal. Chem. 72, 642A–651A (2000)

    Google Scholar 

  158. H. Klank, J.P. Kutter, O. Geschke: CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems, Lab on a Chip 2, 242–246 (2002)

    Google Scholar 

  159. C.-H. Lin, C.-H. Chao, C.-W. Lan: Low azeotropic solvent for bonding of PMMA microfluidic devices, Sens. Actuat. B 121, 698–705 (2007)

    Google Scholar 

  160. Z. Chen, Y. Gao, J. Lin, R. Su, Y. Xie: Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template, J. Chromatogra. A 1038, 39–245 (2004)

    Google Scholar 

  161. C.-W. Tsao, D.L. DeVoe: Bonding of thermoplastic polymer microfluidics, Microfluid. Nanofluidics 6, 1–16 (2009)

    Google Scholar 

  162. S.A. Soper, A.C. Henry, B. Vaidya, M. Galloway, M. Wabuyele, R.L. McCarley: Surface modification of polymer-based microfluidic devices, Anal. Chim. Acta 470, 87–99 (2002)

    Google Scholar 

  163. J. Wang, A. Muck Jr., M.P. Chatrathi, G. Chen, N. Mittal, S.D. Spillman, S. Obeidat: Bulk modification of polymeric microfluidic devices, Lab Chip 5, 226–230 (2005)

    Google Scholar 

  164. F. Dang, L. Zhang, H. Hagiwara, Y. Mishina, Y. Baba: Ultrafast analysis of oligosaccharides on microchip with light-emitting diode confocal fluorescence detection, Electrophoresis 24, 714–721 (2003)

    Google Scholar 

  165. C. Goll, W. Bacher, B. Buestgens, D. Maas, W. Menz, W. Schomburg: Microvalves with bistable buckled polymer diaphragms, J. Micromech. Microeng. 6, 77 (1996)

    Google Scholar 

  166. C. Goll, W. Bacher, B. Büstgens, D. Maas, R. Ruprecht, W. Schomburg: An electrostatically actuated polymer microvalve equipped with a movable membrane electrode, J. Micromech. Microeng. 7, 224 (1997)

    Google Scholar 

  167. Z. Azeem, P. Andrea, S.E. Winnie, D. Maria: Fabrication of polyimide based microfluidic channels for biosensor devices, J. Micromech. Microeng. 25, 035022 (2015)

    Google Scholar 

  168. R.R. Richardson Jr., J.A. Miller, W.M. Reichert: Polyimides as biomaterials: Preliminary biocompatibility testing, Biomaterials 14, 627–635 (1993)

    Google Scholar 

  169. I.K. Glasgow, D.J. Beebe, V.E. White: Design rules for polyimide solvent bonding, Sens. Mater. 11, 269–278 (1999)

    Google Scholar 

  170. A. Bayrashev, B. Ziaie: Silicon wafer bonding with an insulator interlayer using RF dielectric heating. In: IEEE Int. Conf (2002) pp. 419–422

    Chapter  Google Scholar 

  171. K. Min, D. Kim: Pressure tolerant multilayered polymer film microfluidics by one-step bonding process for high throughput emulsion generation. In: 16th Int. Conf. Miniaturized Syst. Chem. Life Sci. (2012) pp. 1798–1800

    Google Scholar 

  172. B.-K. Zhu, S.-H. Xie, Z.-K. Xu, Y.-Y. Xu: Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites, Compos. Sci. Technol. 66, 548–554 (2006)

    Google Scholar 

  173. X. Jiang, Y. Bin, M. Matsuo: Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization, Polymer 46, 7418–7424 (2005)

    Google Scholar 

  174. Y. Zhao, J.T. Yeow, L.A. Zheng: Simple and quick fabrication method of microfluidic cell sorter using Dielectrophoresis. In: The 7th IEEE Int. Conf. Nano–Molecular Medicine and Engineering (2013) pp. 32–35

    Google Scholar 

  175. E.W. Young, E. Berthier, D.J. Guckenberger, E. Sackmann, C. Lamers, I. Meyvantsson, A. Huttenlocher, D.J. Beebe: Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays, Anal. Chem. 83, 1408–1417 (2011)

    Google Scholar 

  176. P.M. van Midwoud, A. Janse, M.T. Merema, G.M. Groothuis, E. Verpoorte: Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models, Anal. Chem. 84, 3938–3944 (2012)

    Google Scholar 

  177. M.-S. Choi, J.-C. Yoo: Automated centrifugal-microfluidic platform for DNA purification using laser burst valve and voriolis effect, Appl. Biochem. Biotechnol. 175, 3778–3787 (2015)

    Google Scholar 

  178. D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, P. Garstecki: Bonding of microfluidic devices fabricated in polycarbonate, Lab Chip 10, 1324–1327 (2010)

    Google Scholar 

  179. R.K. Jena, C. Yue: Cyclic olefin copolymer based microfluidic devices for biochip applications: Ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine, Biomicrofluidics 6, 012822 (2012)

    Google Scholar 

  180. J.S. Jeon, S. Chung, R.D. Kamm, J.L. Charest: Hot embossing for fabrication of a microfluidic 3-D cell culture platform, Biomed. Microdevices 13, 325–333 (2011)

    Google Scholar 

  181. J. Steigert, S. Haeberle, T. Brenner, C. Müller, C. Steinert, P. Koltay, N. Gottschlich, H. Reinecke, J. Rühe, R. Zengerle: Rapid prototyping of microfluidic chips in COC, J. Micromech. Microeng. 17, 333 (2007)

    Google Scholar 

  182. V. Gubala, L.F. Harris, A.J. Ricco, M.X. Tan, D.E. Williams: Point of care diagnostics: Status and future, Anal. Chem. 84, 487–515 (2011)

    Google Scholar 

  183. C. Renault, X. Li, S.E. Fosdick, R.M. Crooks: Hollow-channel paper analytical devices, Anal. Chem. 85, 7976–7979 (2013)

    Google Scholar 

  184. L. Cai, Y. Wu, C. Xu, Z. Chen: A simple paper-based microfluidic device for the determination of the total amino acid content in a tea leaf extract, J. Chem. Educ. 90, 232–234 (2012)

    Google Scholar 

  185. J. Olkkonen, K. Lehtinen, T. Erho: Flexographically printed fluidic structures in paper, Anal. Chem. 82, 10246–10250 (2010)

    Google Scholar 

  186. J.S. Miller, K.R. Stevens, M.T. Yang, B.M. Baker, D.-H.T. Nguyen, D.M. Cohen, E. Toro, A.A. Chen, P.A. Galie, X. Yu: Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues, Nat. Mater. 11, 768–774 (2012)

    Google Scholar 

  187. Y. Xia, J. Si, Z. Li: Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review, Biosens. Bioelectron. 77, 774–789 (2016)

    Google Scholar 

  188. X. Li, D.R. Ballerini, W. Shen: A perspective on paper-based microfluidics: Current status and future trends, Biomicrofluidics 6, 011301 (2012)

    Google Scholar 

  189. K.M. Schilling, A.L. Lepore, J.A. Kurian, A.W. Martinez: Fully enclosed microfluidic paper-based analytical devices, Anal. Chem. 84, 1579–1585 (2012)

    Google Scholar 

  190. E.W. Washburn: The dynamics of capillary flow, Phys. Rev. 17, 273 (1921)

    Google Scholar 

  191. Y. Lu, W. Shi, L. Jiang, J. Qin, B. Lin: Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay, Electrophoresis 30, 1497–1500 (2009)

    Google Scholar 

  192. K. Abe, K. Suzuki, D. Citterio: Inkjet-printed microfluidic multianalyte chemical sensing paper, Anal. Chem. 80, 6928–6934 (2008)

    Google Scholar 

  193. X. Li, J. Tian, W. Shen: Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors, Cellulose 17, 649–659 (2010)

    Google Scholar 

  194. C. Renault, K. Scida, K.N. Knust, S.E. Fosdick, R.M. Crooks: Paper-based bipolar electrochemistry, J. Electrochem. Sci. Technol. 4, 146–152 (2013)

    Google Scholar 

  195. W. Dungchai, O. Chailapakul, C.S. Henry: A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing, Analyst 136, 77–82 (2011)

    Google Scholar 

  196. E.M. Fenton, M.R. Mascarenas, G.P. López, S.S. Sibbett: Multiplex lateral-flow test strips fabricated by two-dimensional shaping, ACS Appl. Mater. Interfaces 1, 124–129 (2008)

    Google Scholar 

  197. S. Jahanshahi-Anbuhi, P. Chavan, C. Sicard, V. Leung, S.Z. Hossain, R. Pelton, J.D. Brennan, C.D. Filipe: Creating fast flow channels in paper fluidic devices to control timing of sequential reactions, Lab on a Chip 12, 5079–5085 (2012)

    Google Scholar 

  198. E. Carrilho, S.T. Phillips, S.J. Vella, A.W. Martinez, G.M. Whitesides: Paper microzone plates, Anal. Chem. 81, 5990–5998 (2009)

    Google Scholar 

  199. G. Chitnis, Z. Ding, C.-L. Chang, C.A. Savran, B. Ziaie: Laser-treated hydrophobic paper: An inexpensive microfluidic platform, Lab on a Chip 11, 1161–1165 (2011)

    Google Scholar 

  200. C.L. Sones, I.N. Katis, P.J. He, B. Mills, M.F. Namiq, P. Shardlow, M. Ibsen, R.W. Eason: Laser-induced photo-polymerisation for creation of paper-based fluidic devices, Lab Chip 14, 4567–4574 (2014)

    Google Scholar 

  201. X. Li, J. Tian, T. Nguyen, W. Shen: Paper-based microfluidic devices by plasma treatment, Anal. Chem. 80, 9131–9134 (2008)

    Google Scholar 

  202. A.W. Martinez, S.T. Phillips, B.J. Wiley, M. Gupta, G.M. Whitesides: FLASH: A rapid method for prototyping paper-based microfluidic devices, Lab on a Chip 8, 2146–2150 (2008)

    Google Scholar 

  203. E. Carrilho, A.W. Martinez, G.M. Whitesides: Understanding wax printing: A simple micropatterning process for paper-based microfluidics, Anal. Chem. 81, 7091–7095 (2009)

    Google Scholar 

  204. A.K. Yetisen, M.S. Akram, C.R. Lowe: Paper-based microfluidic point-of-care diagnostic devices, Lab on a Chip 13, 2210–2251 (2013)

    Google Scholar 

  205. W. Wang, W.-Y. Wu, J.-J. Zhu: Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration, J. Chromatogra A 1217, 3896–3899 (2010)

    Google Scholar 

  206. W. Dungchai, O. Chailapakul, C.S. Henry: Electrochemical detection for paper-based microfluidics, Anal. Chem. 81, 5821–5826 (2009)

    Google Scholar 

  207. L. Ge, S. Wang, S. Ge, J. Yu, M. Yan, N. Li, J. Huang: Electrophoretic separation in a microfluidic paper-based analytical device with an on-column wireless electrogenerated chemiluminescence detector, Chem. Commun. (Camb.) 50, 5699–5702 (2014)

    Google Scholar 

  208. L. Wu, C. Ma, L. Ge, Q. Kong, M. Yan, S. Ge, J. Yu: Paper-based electrochemiluminescence origami cyto-device for multiple cancer cells detection using porous AuPd alloy as catalytically promoted nanolabels, Biosens. Bioelectron. 63, 450–457 (2015)

    Google Scholar 

  209. L. Ge, J. Yan, X. Song, M. Yan, S. Ge, J. Yu: Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing, Biomaterials 33, 1024–1031 (2012)

    Google Scholar 

  210. M.M. Mentele, J. Cunningham, K. Koehler, J. Volckens, C.S. Henry: Microfluidic paper-based analytical device for particulate metals, Anal. Chem. 84, 4474–4480 (2012)

    Google Scholar 

  211. P. Rattanarat, W. Dungchai, D. Cate, J. Volckens, O. Chailapakul, C.S. Henry: Multilayer paper-based device for colorimetric and electrochemical quantification of metals, Anal. Chem. 86, 3555–3562 (2014)

    Google Scholar 

  212. P. Rattanarat, W. Dungchai, D.M. Cate, W. Siangproh, J. Volckens, O. Chailapakul, C.S. Henry: A microfluidic paper-based analytical device for rapid quantification of particulate chromium, Anal. Chim. Acta 800, 50–55 (2013)

    Google Scholar 

  213. D.M. Cate, P. Nanthasurasak, P. Riwkulkajorn, C. L’Orange, C.S. Henry, J. Volckens: Rapid detection of transition metals in welding fumes using paper-based analytical devices, Ann. Occup. 58, 413–423 (2014)

    Google Scholar 

  214. L. Feng, X. Li, H. Li, W. Yang, L. Chen, Y. Guan: Enhancement of sensitivity of paper-based sensor array for the identification of heavy-metal ions, Anal. Chim. Acta 780, 74–80 (2013)

    Google Scholar 

  215. B.M. Jayawardane, R.W. Cattrall, S.D. Kolev: The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu (II), Anal. Chim. Acta 803, 106–112 (2013)

    Google Scholar 

  216. J. Jokerst, J.A. Adkins, B. Bisha, M. Mentele, L. Goodridge, C. Henry: A Paper-based analytical device for the colorimetric detection of foodborne pathogenic bacteria. In: Proc. 15th Int. Conf. Miniaturized Syst. Chem. Life Sci. (2011) pp. 2116–2118

    Google Scholar 

  217. W. Liu, J. Kou, H. Xing, B. Li: Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables, Biosens. Bioelectron. 52, 76–81 (2014)

    Google Scholar 

  218. Y. Wang, J. Ping, Z. Ye, J. Wu, Y. Ying: Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of escherichia coli O157:H7, Biosens. Bioelectron. 49, 492–498 (2013)

    Google Scholar 

  219. J. Shi, F. Tang, H. Xing, H. Zheng, B. Lianhua, W. Wei: Electrochemical detection of Pb and Cd in paper-based microfluidic devices, J. Braz. Chem. Soc. 23, 1124–1130 (2012)

    Google Scholar 

  220. D.M. Cate, J.A. Adkins, J. Mettakoonpitak, C.S. Henry: Recent developments in paper-based microfluidic devices, Anal. Chem. 87, 19–41 (2014)

    Google Scholar 

  221. W.K. Tomazelli Coltro, C.M. Cheng, E. Carrilho, D.P. Jesus: Recent advances in low-cost microfluidic platforms for diagnostic applications, Electrophoresis 35, 2309–2324 (2014)

    Google Scholar 

  222. D.R. Ballerini, X. Li, W. Shen: Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics, Microfluid. Nanofluidics 13, 769–787 (2012)

    Google Scholar 

  223. A. Nilghaz, D. Ballerini, W. Shen: Exploration of microfluidic devices based on multi-filament threads and textiles: A review, Biomicrofluidics 7, 051501 (2013)

    Google Scholar 

  224. A. Nilghaz, D.R. Ballerini, X.-Y. Fang, W. Shen: Semiquantitative analysis on microfluidic thread-based analytical devices by ruler, Sens. Actuat. B: Chem. 191, 586–594 (2014)

    Google Scholar 

  225. X. Li, J. Tian, W. Shen: Thread as a versatile material for low-cost microfluidic diagnostics, ACS Appl. Mater. Interfaces 2, 1–6 (2009)

    Google Scholar 

  226. K.T. Hodgson, J.C. Berg: The effect of surfactants on wicking flow in fiber networks, J. Colloid Interface Sci. 121, 22–31 (1988)

    Google Scholar 

  227. N. Wang, A. Zha, J. Wang: Study on the wicking property of polyester filament yarns, Fibers Polym 9, 97–100 (2008)

    Google Scholar 

  228. D.R. Ballerini, X. Li, W. Shen: Flow control concepts for thread-based microfluidic devices, Biomicrofluidics 5, 014105 (2011)

    Google Scholar 

  229. P. Bhandari, T. Narahari, D. Dendukuri: Fab-Chips: A versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics, Lab on a Chip 11, 2493–2499 (2011)

    Google Scholar 

  230. R. Safavieh, G.Z. Zhou, D. Juncker: Microfluidics made of yarns and knots: From fundamental properties to simple networks and operations, Lab on a Chip 11, 2618–2624 (2011)

    Google Scholar 

  231. G.O.F. Parikesit, F. Prasetia, G.A. Pribadi, D.C. Simbolon, G.Y. Pradhana, A.R. Prastowo, A. Gunawan, K. Suryopratomo, I. Kusumaningtyas: Textile-based microfluidics: Modulated wetting, mixing, sorting, and energy harvesting, J. Text. Inst. 103, 1077–1087 (2012)

    Google Scholar 

  232. S. Xing, J. Jiang, T. Pan: Interfacial microfluidic transport on micropatterned superhydrophobic textile, Lab on a Chip 13, 1937–1947 (2013)

    Google Scholar 

  233. T. Liu, K.-F. Choi, Y. Li: Wicking in twisted yarns, J. Colloid Interface Sci. 318, 134–139 (2008)

    Google Scholar 

  234. J. Wiener, P. Dejlová: Wicking and wetting in textiles, Autex Res. J. 3, 64–71 (2003)

    Google Scholar 

  235. J. Ráhel’, M. Šimor, M. Černák, M. Štefečka, Y. Imahori, M. Kando: Hydrophilization of polypropylene nonwoven fabric using surface barrier discharge, Surf. Coat. Technol. 169/170, 604–608 (2003)

    Google Scholar 

  236. M. Reches, K.A. Mirica, R. Dasgupta, M.D. Dickey, M.J. Butte, G.M. Whitesides: Thread as a matrix for biomedical assays, ACS Appl. Mater. Interfaces 2, 1722–1728 (2010)

    Google Scholar 

  237. D.R. Ballerini, X. Li, W. Shen: An inexpensive thread-based system for simple and rapid blood grouping, Anal. Bioanal. Chem. 399, 1869–1875 (2011)

    Google Scholar 

  238. A. Nilghaz, D.H. Wicaksono, D. Gustiono, F.A.A. Majid, E. Supriyanto, M.R.A. Kadir: Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique, Lab Chip 12, 209–218 (2012)

    Google Scholar 

  239. R.S. Malon, K.Y. Chua, D.H. Wicaksono, E.P. Corcoles: Cotton fabric-based electrochemical device for lactate measurement in saliva, Analyst 139, 3009–3016 (2014)

    Google Scholar 

  240. W. Guan, C. Zhang, F. Liu, M. Liu: Chemiluminescence detection for microfluidic cloth-based analytical devices (muCADs), Biosens. Bioelectron. 72, 114–120 (2015)

    Google Scholar 

  241. W. Guan, M. Liu, C. Zhang: Electrochemiluminescence detection in microfluidic cloth-based analytical devices, Biosens. Bioelectron. 75, 247–253 (2016)

    Google Scholar 

  242. T. Choudhary, G.P. Rajamanickam, D. Dendukuri: Woven electrochemical fabric-based test sensors (WEFTS): A new class of multiplexed electrochemical sensors, Lab Chip 15, 2064–2072 (2015)

    Google Scholar 

  243. G. Zhou, X. Mao, D. Juncker: Immunochromatographic assay on thread, Anal. Chem. 84, 7736–7743 (2012)

    Google Scholar 

  244. D. Agustini, M.F. Bergamini, L.H. Marcolino-Junior: Low cost microfluidic device based on cotton threads for electroanalytical application, Lab Chip 16, 345–352 (2016)

    Google Scholar 

  245. A. Nilghaz, D.R. Ballerini, L. Guan, L. Li, W. Shen: Red blood cell transport mechanisms in polyester thread-based blood typing devices, Anal. Bioanal. Chem. 408, 1365–1371 (2016)

    Google Scholar 

  246. Y.-C. Wei, L.-M. Fu, C.-H. Lin: Electrophoresis separation and electrochemical detection on a novel thread-based microfluidic device, Microfluid. Nanofluid. 14, 583–590 (2013)

    Google Scholar 

  247. B.G. Chung, K.H. Lee, A. Khademhosseini, S.H. Lee: Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering, Lab Chip 12, 45–59 (2012)

    Google Scholar 

  248. X. Zhang, L. Li, C. Luo: Gel integration for microfluidic applications, Lab Chip 16, 1757–1776 (2016)

    Google Scholar 

  249. B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas: Hydrogels in regenerative medicine, Adv. Mater. 21, 3307–3329 (2009)

    Google Scholar 

  250. N.A. Peppas, B. Kim: Stimuli-sensitive protein delivery systems, J. Drug Deliv. Sci. Technol. 16, 11–18 (2006)

    Google Scholar 

  251. S.Y. Cheng, S. Heilman, M. Wasserman, S. Archer, M.L. Shuler, M. Wu: A hydrogel-based microfluidic device for the studies of directed cell migration, Lab Chip 7, 763–769 (2007)

    Google Scholar 

  252. B.R. Lee, J.W. Hwang, Y.Y. Choi, S.F. Wong, Y.H. Hwang, D.Y. Lee, S.H. Lee: In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids, Biomaterials 33, 837–845 (2012)

    Google Scholar 

  253. F.R. Walter, S. Valkai, A. Kincses, A. Petneházi, T. Czeller, S. Veszelka, P. Ormos, M.A. Deli, A. Dér: A versatile lab-on-a-chip tool for modeling biological barriers, Sens. Actuat. B: Chem. 222, 1209–1219 (2016)

    Google Scholar 

  254. J. Wan: Microfluidic-based synthesis of hydrogel particles for cell microencapsulation and cell-based drug delivery, Polymers 4, 1084–1108 (2012)

    Google Scholar 

  255. G.D. Nicodemus, S.J. Bryant: Cell encapsulation in biodegradable hydrogels for tissue engineering applications, Tissue Eng. Part B: Rev. 14, 149–165 (2008)

    Google Scholar 

  256. P. Worthington, D.J. Pochan, S.A. Langhans: Peptide hydrogels-versatile matrices for 3-D cell culture in cancer medicine, Front. Oncol. 5, 92–92 (2014)

    Google Scholar 

  257. E.M. Ahmed: Hydrogel: Preparation, characterization, and applications: A review, J. Adv. Res. 6, 105–121 (2015)

    Google Scholar 

  258. B. Amsden: Solute diffusion within hydrogels, mechanisms and models, Macromolecules 31, 8382–8395 (1998)

    Google Scholar 

  259. J.-I. Horinaka, R. Yasuda, T. Takigawa: Rheological properties of concentrated solutions of galactomannans in an ionic liquid, Carbohydr. Polym. 89, 1018–1021 (2012)

    Google Scholar 

  260. H. Zhang, W. Davison: Diffusional characteristics of hydrogels used in DGT and DET techniques, Anal. Chim. Acta 398, 329–340 (1999)

    Google Scholar 

  261. V. Normand, D.L. Lootens, E. Amici, K.P. Plucknett, P. Aymard: New insight into agarose gel mechanical properties, Biomacromolecules 1, 730–738 (2000)

    Google Scholar 

  262. D. Kim, D.J. Beebe: Hydrogel-based reconfigurable components for microfluidic devices, Lab on a Chip 7, 193–198 (2007)

    Google Scholar 

  263. C. Luo, X. Ni, L. Liu, S.I.M. Nomura, Y. Chen: Degassing-assisted patterning of cell culture surfaces, Biotechnol. Bioeng. 105, 854–859 (2010)

    Google Scholar 

  264. L.M. Bellan, M. Pearsall, D.M. Cropek, R. Langer: A 3-D interconnected microchannel network formed in gelatin by sacrificial shellac microfibers, Adv. Mater. 24, 5187–5191 (2012)

    Google Scholar 

  265. X.-Y. Wang, Z.-H. Jin, B.-W. Gan, S.-W. Lv, M. Xie, W.-H. Huang: Engineering interconnected 3-D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template, Lab on a Chip 14, 2709–2716 (2014)

    Google Scholar 

  266. L.M. Bellan, S.P. Singh, P.W. Henderson, T.J. Porri, H.G. Craighead, J.A. Spector: Fabrication of an artificial 3-dimensional vascular network using sacrificial sugar structures, Soft Matter 5, 1354–1357 (2009)

    Google Scholar 

  267. A.P. Wong, R. Perez-Castillejos, J.C. Love, G.M. Whitesides: Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments, Biomaterials 29, 1853–1861 (2008)

    Google Scholar 

  268. S. Chung, R. Sudo, P.J. Mack, C.-R. Wan, V. Vickerman, R.D. Kamm: Cell migration into scaffolds under co-culture conditions in a microfluidic platform, Lab on a Chip 9, 269–275 (2009)

    Google Scholar 

  269. H. Xu, M.M. Ferreira, S.C. Heilshorn: Small-molecule axon-polarization studies enabled by a shear-free microfluidic gradient generator, Lab on a Chip 14, 2047–2056 (2014)

    Google Scholar 

  270. S. Park, D. Kim, S.Y. Ko, J.-O. Park, S. Akella, B. Xu, Y. Zhang, S. Fraden: Controlling uniformity of photopolymerized microscopic hydrogels, Lab on a Chip 14, 1551–1563 (2014)

    Google Scholar 

  271. N. Zaari, P. Rajagopalan, S.K. Kim, A.J. Engler, J.Y. Wong: Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response, Adv. Mater. 16, 2133–2137 (2004)

    Google Scholar 

  272. D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.-H. Jo: Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature 404, 588–590 (2000)

    Google Scholar 

  273. A. Aung, I.S. Bhullar, J. Theprungsirikul, S.K. Davey, H.L. Lim, Y.-J. Chiu, X. Ma, S. Dewan, Y.-H. Lo, A. McCulloch: 3D cardiac $$\upmu$$tissues within a microfluidic device with real-time contractile stress readout, Lab on a Chip 16, 153–162 (2016)

    Google Scholar 

  274. S. Bersini, J.S. Jeon, G. Dubini, C. Arrigoni, S. Chung, J.L. Charest, M. Moretti, R.D. Kamm: A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone, Biomaterials 35, 2454–2461 (2014)

    Google Scholar 

  275. J. Tiren, L. Tenerz, B. Hök: A batch-fabricated non-reverse valve with cantilever beam manufactured by micromachining of silicon, Sens. Actuat. 18, 389–396 (1989)

    Google Scholar 

  276. C.Y. Li, K.R. Stevens, R.E. Schwartz, B.S. Alejandro, J.H. Huang, S.N. Bhatia: Micropatterned cell–cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues, Tissue Eng. Part A 20, 2200–2212 (2014)

    Google Scholar 

  277. S. Trkov, G. Eng, R. Di Liddo, P.P. Parnigotto, G. Vunjak-Novakovic: Micropatterned 3-dimensional hydrogel system to study human endothelial mesenchymal stem cell interactions, J. Tissue Eng. Regen. Medi. 4, 205 (2010)

    Google Scholar 

  278. J.H. Sung, M.L. Shuler: A micro cell culture analog (μCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs, Lab on a Chip 9, 1385–1394 (2009)

    Google Scholar 

  279. M. Verhulsel, M. Vignes, S. Descroix, L. Malaquin, D.M. Vignjevic, J.-L. Viovy: A review of microfabrication and hydrogel engineering for micro-organs on chips, Biomaterials 35, 1816–1832 (2014)

    Google Scholar 

  280. H.-F. Li, J.-M. Lin: Applications of microfluidic systems in environmental analysis, Anal. Bioanal. Chem. 393, 555–567 (2009)

    Google Scholar 

  281. C.D. Chin, T. Laksanasopin, Y.K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J. Wang, H. Moore, R. Rouse, G. Umviligihozo, E. Karita, L. Mwambarangwe, S.L. Braunstein, J. van de Wijgert, R. Sahabo, J.E. Justman, W. El-Sadr, S.K. Sia: Microfluidics-based diagnostics of infectious diseases in the developing world, Nat. Med. 17, 1015–1019 (2011)

    Google Scholar 

  282. P.S. Dittrich, A. Manz: Lab-on-a-chip: Microfluidics in drug discovery, Nat. Rev. Drug. Discov. 5, 210–218 (2006)

    Google Scholar 

  283. I.U. Khan, C.A. Serra, N. Anton, T.F. Vandamme: Production of nanoparticle drug delivery systems with microfluidics tools, Expert Opin. Drug. Deliv. 12, 547–562 (2015)

    Google Scholar 

  284. A.J. Demello: Control and detection of chemical reactions in microfluidic systems, Nature 442, 394–402 (2006)

    Google Scholar 

  285. P.M. Valencia, E.M. Pridgen, M. Rhee, R. Langer, O.C. Farokhzad, R. Karnik: Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy, ACS Nano 7, 10671–10680 (2013)

    Google Scholar 

  286. P.S. Glockner, G.F. Naterer: Recent advances in nano-electromechanical and microfluidic power generation, Int. J. Energy Res. 31, 603–618 (2007)

    Google Scholar 

  287. A.B. Dababneh, I.T. Ozbolat: Bioprinting technology: A current state-of-the-art review, J. Manuf. Sci. Eng. 136, 061016 (2014)

    Google Scholar 

  288. G. Cummins, M.P.Y. Desmulliez: Inkjet printing of conductive materials: A review, Circuit World 38, 193–213 (2012)

    Google Scholar 

  289. R.P. Tortorich, J.-W. Choi: Inkjet printing of carbon nanotubes, Nanomaterials 3, 453–468 (2013)

    Google Scholar 

  290. H.P. Le: Progress and trends in ink-jet printing technology, J. Imaging Sci. Technol. 42, 49–62 (1998)

    Google Scholar 

  291. A.K. Au, H. Lai, B.R. Utela, A. Folch: Microvalves and micropumps for biomems, Micromachines 2, 179–220 (2011)

    Google Scholar 

  292. M.W. Ashraf, S. Tayyaba, N. Afzulpurkar: Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications, Int. J. Mol. Sci. 12, 3648–3704 (2011)

    Google Scholar 

  293. IndustryARC: Dispensing systems market by technology by end user application 2020, http://industryarc.com/Report/250/Dispensing-systems-Market-analysis-report.html (2016)

  294. D.C.S. Bien, S.J.N. Mitchell, H.S. Gamble: Fabrication and characterization of a micromachined passive valve, J. Micromech. Microeng. 13, 557 (2003)

    Google Scholar 

  295. E.F. Hasselbrink, T.J. Shepodd, J.E. Rehm: High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths, Anal. Chem. 74, 4913–4918 (2002)

    Google Scholar 

  296. M. Yamada, M. Seki: Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices, Anal. Chem. 76, 895–899 (2004)

    Google Scholar 

  297. H. Andersson, W. van der Wijngaart, P. Griss, F. Niklaus, G. Stemme: Hydrophobic valves of plasma deposited octafluorocyclobutane in DRIE channels, Sens. Actuat B: Chem. 75, 136–141 (2001)

    Google Scholar 

  298. K. Yanagisawa, H. Kuwano, A. Tago: Electromagetically driven microvalve, Microsyst. Technol. 2, 22–25 (1995)

    Google Scholar 

  299. B. Byunghoon, K. Nakhoon, K. Hongseok, K. Seon-Ho, L. Yeon, L. Sangho, P. Kyihwan: Feasibility test of an electromagnetically driven valve actuator for glaucoma treatment, J. Microelectromech. Syst. 11, 344–354 (2002)

    Google Scholar 

  300. K.W. Oh, R. Rong, C.H. Ahn: Miniaturization of pinch-type valves and pumps for practical micro total analysis system integration, J. Micromech. Microeng. 15(12), 2449 (2005)

    Google Scholar 

  301. J. Schaible, J. Vollmer, R. Zengerle, H. Sandmaier, T. Strobelt: Electrostatic microvalves in silicon with 2-way-function for industrial applications. In: Transducers’ 01 Eurosensors XV, ed. by E. Obermeier (Springer, Berlin, Heidelberg 2001) pp. 900–903

    Google Scholar 

  302. T. Rogge, Z. Rummler, W.K. Schomburg: Polymer micro valve with a hydraulic piezo-drive fabricated by the Amanda process, Sens. Actuat. A: Phys. 110, 206–212 (2004)

    Google Scholar 

  303. P.W. Barth: Silicon microvalves for gas flow control. In: The 8th Int. Conf. Solid-State Sensors and Actuators, 1995 and Eurosensors IX Transducers (1995) pp. 276–279

    Chapter  Google Scholar 

  304. C.A. Rich, K.D. Wise: A high-flow thermopneumatic microvalve with improved efficiency and integrated state sensing, J. Microelectromech. Syst. 12, 201–208 (2003)

    Google Scholar 

  305. M. Kohl, D. Dittmann, E. Quandt, B. Winzek, S. Miyazaki, D.M. Allen: Shape memory microvalves based on thin films or rolled sheets, Mater. Sci. Eng. A 273–275, 784–788 (1999)

    Google Scholar 

  306. C.R. Neagu, J.G.E. Gardeniers, M. Elwenspoek, J.J. Kelly: Electrochemical microsystem technologiesan electrochemical active valve, Electrochim. Acta 42, 3367–3373 (1997)

    Google Scholar 

  307. R.H. Liu, J. Bonanno, J. Yang, R. Lenigk, P. Grodzinski: Single-use, thermally actuated paraffin valves for microfluidic applications, Sens. Actuat. B: Chem. 98, 328–336 (2004)

    Google Scholar 

  308. B.J. Kirby, T.J. Shepodd, E.F. Hasselbrink Jr.: Voltage-addressable on–off microvalves for high-pressure microchip separations, J. Chromatogr. A 979, 147–154 (2002)

    Google Scholar 

  309. J. Döpper, M. Clemens, W. Ehrfeld, S. Jung, K.P. Kämper, H. Lehr: Micro gear pumps for dosing of viscous fluids, J. Micromech. Microeng. 7, 230 (1997)

    Google Scholar 

  310. R. Zengerle, J. Ulrich, S. Kluge, M. Richter, A. Richter: A bidirectional silicon micropump, Sens. Actuat. A: Phys. 50, 81–86 (1995)

    Google Scholar 

  311. P. Dario, N. Croce, M.C. Carrozza, G. Varallo: A fluid handling system for a chemical microanalyzer, J. Micromech. Microeng. 6, 95 (1996)

    Google Scholar 

  312. H. Andersson, W. van der Wijngaart, P. Nilsson, P. Enoksson, G. Stemme: A valve-less diffuser micropump for microfluidic analytical systems, Sens. Actuat. B: Chem. 72, 259–265 (2001)

    Google Scholar 

  313. H.T.G. van Lintel, F.C.M. van De Pol, S. Bouwstra: A piezoelectric micropump based on micromachining of silicon, Sens. Actuat. 15, 153–167 (1988)

    Google Scholar 

  314. E. Stemme, G. Stemme: A valveless diffuser–nozzle-based fluid pump, Sens. Actuat. A: Phys. 39, 159–167 (1993)

    Google Scholar 

  315. F.K. Forster, R.L. Bardell, M.A. Afromowitz, N.R. Sharma, A. Blanchard: Design, fabrication and testing of fixed-valve micro-pumps, ASME-Publications-FED 234, 39–44 (1995)

    Google Scholar 

  316. T. Gerlach, H. Wurmus: Working principle and performance of the dynamic micropump, Sens. Actuat. A: Phys. 50, 135–140 (1995)

    Google Scholar 

  317. O. Anders, E. Peter, S. Göran, S. Erik: A valve-less planar pump isotropically etched in silicon, J. Micromech. Microeng. 6, 87 (1996)

    Google Scholar 

  318. M. Koch, N. Harris, A.G.R. Evans, N.M. White, A. Brunnschweiler: A novel micromachined pump based on thick-film piezoelectric actuation, Sens. Actuat. A: Phys. 70, 98–103 (1998)

    Google Scholar 

  319. L. Weber: Micropump and method for the production thereof, US Patent (Application) 7771176 (2010)

    Google Scholar 

  320. H.T. Van Lintel, D. Maillefer, S. Gamper: Micromachined fluidic device and method for making same, US Patent (Application) CA241030611 (2001)

    Google Scholar 

  321. J.-H. Tsai, L. Lin: A thermal-bubble-actuated micronozzle-diffuser pump, J. Microelectromech. Syst. 11, 665–671 (2002)

    Google Scholar 

  322. S. Böhm, B. Timmer, W. Olthuis, P. Bergveld: A closed-loop controlled electrochemically actuated micro-dosing system, J. Micromech. Microeng. 10(4), 498 (2000)

    Google Scholar 

  323. G. Fuhr, T. Schnelle, B. Wagner: Travelling wave-driven microfabricated electrohydrodynamic pumps for liquids, J. Micromech. Microeng. 4, 217 (1994)

    Google Scholar 

  324. J. Jang, S.S. Lee: Theoretical and experimental study of MHD (magnetohydrodynamic) micropump, Sens. Actuat. A: Phys. 80, 84–89 (2000)

    Google Scholar 

  325. S. Debesset, C. Hayden, C. Dalton, J. Eijkel, A. Manz: An AC electroosmotic micropump for circular chromatographic applications, Lab Chip 4, 396–400 (2004)

    Google Scholar 

  326. R. Huter: Zeta Potential in Colloid Science (Academic, London 1981)

    Google Scholar 

  327. P. Luginbuhl, S.D. Collins, G.A. Racine, M.A. Gretillat, N.F.D. Rooij, K.G. Brooks, N. Setter: Microfabricated Lamb wave device based on PZT sol-gel thin film for mechanical transport of solid particles and liquids, J. Microelectromech. Syst. 6, 337–346 (1997)

    Google Scholar 

  328. K.S. Yun, I.J. Cho, J.U. Bu, C.J. Kim, E. Yoon: A surface-tension driven micropump for low-voltage and low-power operations, J. Microelectromech. Syst. 11(5), 454–461 (2002)

    Google Scholar 

  329. T. Wang, Q. Ni, N. Crane, R. Guldiken: Surface acoustic wave based pumping in a microchannel, Microsyst. Technol. 23, 1–8 (2016)

    Google Scholar 

  330. A.E. Kamholz, B.H. Weigl, B.A. Finlayson, P. Yager: Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor, Anal. Chem. 71, 5340–5347 (1999)

    Google Scholar 

  331. R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, H.A. Stone: Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels, Appl. Phys. Lett. 76, 2376–2378 (2000)

    Google Scholar 

  332. S.H. Wong, M.C.L. Ward, C.W. Wharton: Micro T-mixer as a rapid mixing micromixer, Sens. Actuat. B: Chem. 100, 359–379 (2004)

    Google Scholar 

  333. M. Yi, H.H. Bau: The kinematics of bend-induced mixing in micro-conduits, Int. J. Heat Fluid Flow 24, 645–656 (2003)

    Google Scholar 

  334. G.F. Bessoth, J.A. deMello, A. Manz: Microstructure for efficient continuous flow mixing, Anal. Commun. 36, 213–215 (1999)

    Google Scholar 

  335. J.B. Knight, A. Vishwanath, J.P. Brody, R.H. Austin: Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds, Phys. Rev. Lett. 80, 3863–3866 (1998)

    Google Scholar 

  336. R. Miyake, T.S.J. Lammerink, M. Elwenspoek, J.H.J. Fluitman: Micro mixer with fast diffusion. In: MEMS (1993) pp. 248–253

    Chapter  Google Scholar 

  337. Y. Lin, G.J. Gerfen, D.L. Rousseau, S.-R. Yeh: Ultrafast microfluidic mixer and freeze-quenching device, Anal. Chem. 75, 5381–5386 (2003)

    Google Scholar 

  338. C.-C. Hong, J.-W. Choi, C.H. Ahn: A novel in-plane passive microfluidic mixer with modified Tesla structures, Lab on a Chip 4, 109–113 (2004)

    Google Scholar 

  339. A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezić, H.A. Stone, G.M. Whitesides: Chaotic mixer for microchannels, Science 295, 647–651 (2002)

    Google Scholar 

  340. K. Hosokawa, T. Fujii, I. Endo: Droplet-based nano–picoliter mixer using hydrophobic microcapillary vent. In: Proc. MEMS’99 (1999) pp. 388–393

    Google Scholar 

  341. A.A. Deshmukh, D. Liepmann, A.P. Pisano: Continuous micromixer with pulsatile micropumps. In: Technical Digest of the IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island (2000)

    Google Scholar 

  342. A.O. El Moctar, N. Aubry, J. Batton: Electro-hydrodynamic micro-fluidic mixer, Lab on a Chip 3, 273–280 (2003)

    Google Scholar 

  343. J. Deval, P. Tabeling, C.-M. Ho: A dielectrophoretic chaotic mixer. In: Proc. MEMS’02 (2002) pp. 36–39

    Google Scholar 

  344. Z. Tang, S. Hong, D. Djukic, V. Modi, A.C. West, J. Yardley, R.M. Osgood: Electrokinetic flow control for composition modulation in a microchannel, J. Micromech. Microeng. 12(6), 870 (2002)

    Google Scholar 

  345. H.H. Bau, J. Zhong, M. Yi: A minute magneto hydro dynamic (MHD) mixer, Sens. Actuat. B: Chem. 79, 207–215 (2001)

    Google Scholar 

  346. V. Vivek, E.S. Kim: Novel acoustic-wave micromixer. In: Proc. MEMS (2000) pp. 668–673

    Google Scholar 

  347. J.-H. Tsai, L. Lin: A thermal-bubble-actuated micronozzle-diffuser pump, J. Microelectromech. Syst. 11(6), 665–671 (2002)

    Google Scholar 

  348. K.S. Elvira, X. Casadevall i Solvas, R.C. Wootton, A.J. deMello: The past, present and potential for microfluidic reactor technology in chemical synthesis, Nat. Chem. 5, 905–915 (2013)

    Google Scholar 

  349. T. Rodrigues, P. Schneider, G. Schneider: Accessing new chemical entities through microfluidic systems, Angew. Chem. Int. Ed. Engl. 53, 5750–5758 (2014)

    Google Scholar 

  350. S. Das, V.C. Srivastava: Microfluidic-based photocatalytic microreactor for environmental application: A review of fabrication substrates and techniques, and operating parameters, Photochem. Photobiol. Sci. 15, 714–730 (2016)

    Google Scholar 

  351. Y. Asano, S. Togashi, H. Tsudome, S. Murakami: Microreactor technology: Innovations in production processes, Pharm. Eng. 30, 32 (2010)

    Google Scholar 

  352. D. Roberge: Lonza–hazardous flow chemistry for streamlined large scale synthesis, Green Process. Synth. 1, 129–130 (2012)

    Google Scholar 

  353. T. Frank: Fabrication and assembling of microreactors made from glass and silicon. In: Microreactors in Organic Synthesis and Catalysis, ed. by T. Wirth (Wiley, Weinheim 2008) pp. 19–41

    Chapter  Google Scholar 

  354. C.-C. Lee, G. Sui, A. Elizarov, C.J. Shu, Y.-S. Shin, A.N. Dooley, J. Huang, A. Daridon, P. Wyatt, D. Stout: Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics, Science 310, 1793–1796 (2005)

    Google Scholar 

  355. J.S. Moore, K.F. Jensen: Automated multitrajectory method for reaction optimization in a microfluidic system using online IR analysis, Organ. Process. Res. Dev. 16, 1409–1415 (2012)

    Google Scholar 

  356. P.R. Selvaganapathy, E.T. Carlen, C.H. Mastrangelo: Recent progress in microfluidic devices for nucleic acid and antibody assays, Proc. IEEE 91, 954–975 (2003)

    Google Scholar 

  357. Y. Zhang, H.R. Jiang: A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future, Anal. Chim. Acta 914, 7–16 (2016)

    Google Scholar 

  358. C. Zhang, J. Xu, W. Ma, W. Zheng: PCR microfluidic devices for DNA amplification, Biotechnol. Adv. 24, 243–284 (2006)

    Google Scholar 

  359. N.R. Beer, B.J. Hindson, E.K. Wheeler, S.B. Hall, K.A. Rose, I.M. Kennedy, B.W. Colston: On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets, Anal. Chem. 79, 8471–8475 (2007)

    Google Scholar 

  360. J. Daniel, S. Iqbal, R. Millington, D. Moore, C. Lowe, D. Leslie, M. Lee, M. Pearce: Silicon microchambers for DNA amplification, Sens. Actuat A: Phys. 71, 81–88 (1998)

    Google Scholar 

  361. J. Khandurina, T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, J.M. Ramsey: Integrated system for rapid PCR-based DNA analysis in microfluidic devices, Anal. Chem. 72, 2995–3000 (2000)

    Google Scholar 

  362. C.G. Koh, W. Tan, M.-Q. Zhao, A.J. Ricco, Z.H. Fan: Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection, Anal. Chem. 75, 4591–4598 (2003)

    Google Scholar 

  363. C.T. Wittwer, G.C. Fillmore, D. Hillyard: Automated polymerase chain reaction in capillary tubes with hot air, Nucl. Acids Res. 17, 4353–4357 (1989)

    Google Scholar 

  364. R. Oda, M. Strausbauch, A. Huhmer, N. Borson, S. Jurrens, J. Craighead, P.J. Wettstein, B. Eckloff, B. Kline, J. Landers: Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA, Anal. Chem. 70, 4361–4368 (1998)

    Google Scholar 

  365. Y. Tanaka, M.N. Slyadnev, A. Hibara, M. Tokeshi, T. Kitamori: Non-contact photothermal control of enzyme reactions on a microchip by using a compact diode laser, J. Chromatogr. A 894, 45–51 (2000)

    Google Scholar 

  366. C. Fermér, P. Nilsson, M. Larhed: Microwave-assisted high-speed PCR, Eur. J. Pharm. Sci. 18, 129–132 (2003)

    Google Scholar 

  367. P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, F. Milanovich: PCR detection of bacteria in 7 minutes, Science 284, 449–450 (1999)

    Google Scholar 

  368. J. Liu, M. Enzelberger, S. Quake: A nanoliter rotary device for polymerase chain reaction, Electrophoresis 23, 1531–1536 (2002)

    Google Scholar 

  369. M. Bu, T. Melvin, G. Ensell, J.S. Wilkinson, A.G. Evans: Design and theoretical evaluation of a novel microfluidic device to be used for PCR, J. Micromech. Microeng. 13, S125 (2003)

    Google Scholar 

  370. K. Perez-Toralla, D. Pekin, J.-F. Bartolo, F. Garlan, P. Nizard, P. Laurent-Puig, J.-C. Baret, V. Taly: PCR digitale en micro-compartiments, Med. Sci. 31, 84–92 (2015)

    Google Scholar 

  371. Z. Hua, J.L. Rouse, A.E. Eckhardt, V. Srinivasan, V.K. Pamula, W.A. Schell, J.L. Benton, T.G. Mitchell, M.G. Pollack: Multiplexed real-time polymerase chain reaction on a digital microfluidic platform, Anal. Chem. 82, 2310–2316 (2010)

    Google Scholar 

  372. D. Pekin, Y. Skhiri, J.-C. Baret, D. Le Corre, L. Mazutis, C.B. Salem, F. Millot, A. El Harrak, J.B. Hutchison, J.W. Larson: Quantitative and sensitive detection of rare mutations using droplet-based microfluidics, Lab on a Chip 11, 2156–2166 (2011)

    Google Scholar 

  373. M. Leman, F. Abouakil, A.D. Griffiths, P. Tabeling: Droplet-based microfluidics at the femtolitre scale, Lab Chip 15, 753–765 (2015)

    Google Scholar 

  374. MarketsandMarkets: Digital PCR and qPCR market by product, application, technology and end user-2021, http://www.marketsandmarkets.com/Market-Reports/digital-pcr-market-174151204.html (2016)

  375. C.-W. Kan, C.P. Fredlake, E.A.S. Doherty, A.E. Barron: DNA sequencing and genotyping in miniaturized electrophoresis systems, Electrophoresis 25, 3564–3588 (2004)

    Google Scholar 

  376. Y. Zhang, P. Ozdemir: Microfluidic DNA amplification – A review, Anal. Chim. Acta 638, 115–125 (2009)

    Google Scholar 

  377. B.M. Paegel, R.G. Blazej, R.A. Mathies: Microfluidic devices for DNA sequencing: sample preparation and electrophoretic analysis, Curr. Opin. Biotechnol. 14, 42–50 (2003)

    Google Scholar 

  378. M.L. Metzker: Emerging technologies in DNA sequencing, Genome Res 15, 1767–1776 (2005)

    Google Scholar 

  379. S. Goodwin, J.D. McPherson, W.R. McCombie: Coming of age: Ten years of next-generation sequencing technologies, Nat. Rev. Genet. 17, 333–351 (2016)

    Google Scholar 

  380. B.P. Hodkinson, E.A. Grice: Next-generation sequencing: A review of technologies and tools for wound microbiome research, Adv. Wound Care (New Rochelle) 4, 50–58 (2015)

    Google Scholar 

  381. E.R. Mardis: Next-generation sequencing platforms, Annu. Rev. Anal. Chem. (Palo Alto Calif.) 6, 287–303 (2013)

    Google Scholar 

  382. H.P. Buermans, J.T. den Dunnen: Next generation sequencing technology: Advances and applications, Biochim. Biophys. Acta 1842, 1932–1941 (2014)

    Google Scholar 

  383. M. Kircher, J. Kelso: High-throughput DNA sequencing – Concepts and limitations, BioEssays 32, 524–536 (2010)

    Google Scholar 

  384. M.L. Metzker: Sequencing technologies the next generation, Nat. Rev. Genet. 11, 31–46 (2010)

    Google Scholar 

  385. L. Wang, P.C.H. Li: Microfluidic DNA microarray analysis: A review, Anal. Chim. Acta 687, 12–27 (2011)

    Google Scholar 

  386. F. Sanger, S. Nicklen, A.R. Coulson: DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. 74, 5463–5467 (1977)

    Google Scholar 

  387. C.S. Effenhauser, A. Paulus, A. Manz, H.M. Widmer: High-speed separation of antisense oligonucleotides on a micromachined capillary electrophoresis device, Anal. Chem. 66, 2949–2953 (1994)

    Google Scholar 

  388. A.T. Woolley, R.A. Mathies: Ultra-high-speed DNA sequencing using capillary electrophoresis chips, Anal. Chem. 67, 3676–3680 (1995)

    Google Scholar 

  389. R.G. Blazej, P. Kumaresan, R.A. Mathies: Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing, Proc. Natl. Acad. Sci. 103, 7240–7245 (2006)

    Google Scholar 

  390. M. Knapp, J. Baker, A. Chow, A. Kopf-Sill, M. Spaid: Single molecule amplification and detection of DNA length, US Patent (Application) 20050042639 A1 (2004)

    Google Scholar 

  391. D.R. Bentley, S. Balasubramanian, H.P. Swerdlow, G.P. Smith, J. Milton, C.G. Brown, K.P. Hall, D.J. Evers, C.L. Barnes, H.R. Bignell, J.M. Boutell, J. Bryant, R.J. Carter, R.K. Cheetham, A.J. Cox, D.J. Ellis, M.R. Flatbush, N.A. Gormley, S.J. Humphray, L.J. Irving, M.S. Karbelashvili, S.M. Kirk, H. Li, X. Liu, K.S. Maisinger, L.J. Murray, B. Obradovic, T. Ost, M.L. Parkinson, M.R. Pratt, I.M. Rasolonjatovo, M.T. Reed, R. Rigatti, C. Rodighiero, M.T. Ross, A. Sabot, S.V. Sankar, A. Scally, G.P. Schroth, M.E. Smith, V.P. Smith, A. Spiridou, P.E. Torrance, S.S. Tzonev, E.H. Vermaas, K. Walter, X. Wu, L. Zhang, M.D. Alam, C. Anastasi, I.C. Aniebo, D.M. Bailey, I.R. Bancarz, S. Banerjee, S.G. Barbour, P.A. Baybayan, V.A. Benoit, K.F. Benson, C. Bevis, P.J. Black, A. Boodhun, J.S. Brennan, J.A. Bridgham, R.C. Brown, A.A. Brown, D.H. Buermann, A.A. Bundu, J.C. Burrows, N.P. Carter, N. Castillo, E.C.M. Chiara, S. Chang: R. Neil Cooley, N.R. Crake, O.O. Dada, K.D. Diakoumakos, B. Dominguez-Fernandez, D.J. Earnshaw, U.C. Egbujor, D.W. Elmore, S.S. Etchin, M.R. Ewan, M. Fedurco, L.J. Fraser, K.V. Fuentes Fajardo, W. Scott Furey, D. George, K.J. Gietzen, C.P. Goddard, G.S. Golda, P.A. Granieri, D.E. Green, D.L. Gustafson, N.F. Hansen, K. Harnish, C.D. Haudenschild, N.I. Heyer, M.M. Hims, J.T. Ho, A.M. Horgan, K. Hoschler, S. Hurwitz, D.V. Ivanov, M.Q. Johnson, T. James, T.A. Huw Jones, G.D. Kang, T.H. Kerelska, A.D. Kersey, I. Khrebtukova, A.P. Kindwall, Z. Kingsbury, P.I. Kokko-Gonzales, A. Kumar, M.A. Laurent, C.T. Lawley, S.E. Lee, X. Lee, A.K. Liao, J.A. Loch, M. Lok, S. Luo, R.M. Mammen, J.W. Martin, P.G. McCauley, P. McNitt, P. Mehta, K.W. Moon, J.W. Mullens, T. Newington, Z. Ning, B. Ling Ng, S.M. Novo, M.J. O’Neill, M.A. Osborne, A. Osnowski, O. Ostadan, L.L. Paraschos, L. Pickering, A.C. Pike, A.C. Pike, D. Chris Pinkard, D.P. Pliskin, J. Podhasky, V.J. Quijano, C. Raczy, V.H. Rae, S.R. Rawlings, A. Chiva Rodriguez, P.M. Roe, J. Rogers, M.C. Rogert Bacigalupo, N. Romanov, A. Romieu, R.K. Roth, N.J. Rourke, S.T. Ruediger, E. Rusman, R.M. Sanches-Kuiper, M.R. Schenker, J.M. Seoane, R.J. Shaw, M.K. Shiver, S.W. Short, N.L. Sizto, J.P. Sluis, M.A. Smith, J. Ernest Sohna Sohna, E.J. Spence, K. Stevens, N. Sutton, L. Szajkowski, C.L. Tregidgo, G. Turcatti, S. Vandevondele, Y. Verhovsky, S.M. Virk, S. Wakelin, G.C. Walcott, J. Wang, G.J. Worsley, J. Yan, L. Yau, M. Zuerlein, J. Rogers, J.C. Mullikin, M.E. Hurles, N.J. McCooke, J.S. West, F.L. Oaks, P.L. Lundberg, D. Klenerman, R. Durbin, A.J. Smith: Accurate whole human genome sequencing using reversible terminator chemistry, Nature 456, 53–59 (2008)

    Google Scholar 

  392. M. Lebl, D.L. Heiner, C. Zhao, D. Barker, L. David: Microfabrication methods for the optimal patterning of substrates, US Patent (Application) 20130096034 A1 (2013)

    Google Scholar 

  393. N. Rusk: Torrents of sequence, Nat. Methods 8, 44–44 (2011)

    Google Scholar 

  394. M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, W.W. Webb: Zero-Mode waveguides for single-molecule analysis at high concentrations, Science 299, 682–686 (2003)

    Google Scholar 

  395. D. Stoddart, A.J. Heron, E. Mikhailova, G. Maglia, H. Bayley: Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore, Proc. Natl. Acad. Sci. U.S.A. 106, 7702–7707 (2009)

    Google Scholar 

  396. E.Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, A.R. Bialas, N. Kamitaki, E.M. Martersteck: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell 161, 1202–1214 (2015)

    Google Scholar 

  397. E.M. Southern, U. Maskos: Support-bound oligonucleotides, US Patent (Application) 5436327 (1995)

    Google Scholar 

  398. R.J. Lipshutz, S.P. Fodor, T.R. Gingeras, D.J. Lockhart: High density synthetic oligonucleotide arrays, Nature Genet 21, 20–24 (1999)

    Google Scholar 

  399. M. Schena, D. Shalon, R.W. Davis, P.O. Brown: Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270, 467 (1995)

    Google Scholar 

  400. M. Schena: Microarray biochip technology eaton publishing, Pharmacogenomics 1, 289–307 (2000)

    Google Scholar 

  401. K. Dill, A. McShea: Recent advances in microarrays, Drug Discov. Today: Technol. 2, 261–266 (2005)

    Google Scholar 

  402. D. Gershon: DNA microarrays: More than gene expression, Nature 437, 1195–1198 (2005)

    Google Scholar 

  403. R.T. Kelly, A.T. Woolley: Microfluidic systems for integrated, high-throughput DNA analysis, Anal. Chem. 77, 96A–102A (2005)

    Google Scholar 

  404. R.H. Liu, K. Dill, H.S. Fuji, A. McShea: Integrated microfluidic biochips for DNA microarray analysis, Expert Rev. Mol. Diagn. 6, 253–261 (2006)

    Google Scholar 

  405. MarketsandMarkets: Gene expression analysis market by applications, technology, consumables and services-2020, http://www.marketsandmarkets.com/Market-Reports/gene-expression-analysis-market-156613968.html (2016)

  406. D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin, D.E. Ingber: Reconstituting organ-level lung functions on a chip, Science 328, 1662–1668 (2010)

    Google Scholar 

  407. J.W. Song, S.P. Cavnar, A.C. Walker, K.E. Luker, M. Gupta, Y.C. Tung, G.D. Luker, S. Takayama: Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells, PLoS One 4, e5756 (2009)

    Google Scholar 

  408. A.R. Aref, R.Y. Huang, W. Yu, K.N. Chua, W. Sun, T.Y. Tu, J. Bai, W.J. Sim, I.K. Zervantonakis, J.P. Thiery, R.D. Kamm: Screening therapeutic EMT blocking agents in a three-dimensional microenvironment, Integr. Biol. (Camb.) 5, 381–389 (2013)

    Google Scholar 

  409. H.J. Kim, D. Huh, G. Hamilton, D.E. Ingber: Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow, Lab Chip 12, 2165–2174 (2012)

    Google Scholar 

  410. Y. Kim, M.E. Lobatto, T. Kawahara, B.L. Chung, A.J. Mieszawska, B.L. Sanchez-Gaytan, F. Fay, M.L. Senders, C. Calcagno, J. Becraft, M. Tun Saung, R.E. Gordon, E.S. Stroes, M. Ma, O.C. Farokhzad, Z.A. Fayad, W.J. Mulder, R. Langer: Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis, Proc. Natl. Acad. Sci. A 111, 1078–1083 (2014)

    Google Scholar 

  411. S.A. Sundberg: High-throughput and ultra-high-throughput screening: Solution-and cell-based approaches, Curr. Opin. Biotechnol. 11, 47–53 (2000)

    Google Scholar 

  412. J. Hong, J.B. Edel: Micro- and nanofluidic systems for high-throughput biological screening, Drug Discov. Today 14, 134–146 (2009)

    Google Scholar 

  413. R. Ghaemi, P.R. Selvaganapathy: Microfluidic devices for automation of assays on drosophila melanogaster for applications in drug discovery and biological studies, Curr. Pharm. Biotechnol. 17, 822–836 (2016)

    Google Scholar 

  414. I. Barbulovic-Nad, A.R. Wheeler: Cell assays in microfluidics. In: Encyclopedia of Microfluidics and Nanofluidics, ed. by D. Li (Springer, New York 2008) pp. 209–216

    Google Scholar 

  415. V.I. Chin, P. Taupin, S. Sanga, J. Scheel, F.H. Gage, S.N. Bhatia: Microfabricated platform for studying stem cell fates, Biotechnol. Bioeng. 88, 399–415 (2004)

    Google Scholar 

  416. E. Delamarche, D. Juncker, H. Schmid: Microfluidics for processing surfaces and miniaturizing biological assays, Adv. Mater. 17, 2911–2933 (2005)

    Google Scholar 

  417. R. Ghaemi, P. Rezai, B.G. Iyengar, P.R. Selvaganapathy: Microfluidic devices for imaging neurological response of Drosophila melanogaster larva to auditory stimulus, Lab on a Chip 15, 1116–1122 (2015)

    Google Scholar 

  418. P. Rezai, S. Salam, P. Selvaganapathy, B.P. Gupta: Microfluidic systems to study the biology of human diseases and identify potential therapeutic targets in C. elegans. In: Integrated Microsystems, ed. by K. Iniewski (CRC Press, Boca Raton 2011) pp. 581–608

    Google Scholar 

  419. P. Rezai, S. Salam, P.R. Selvaganapathy, B.P. Gupta: Electrical sorting of caenorhabditis elegans, Lab Chip 12, 1831–1840 (2012)

    Google Scholar 

  420. C. Mandrycky, Z. Wang, K. Kim, D.H. Kim: 3-D bioprinting for engineering complex tissues, Biotechnol. Adv. 34, 422–434 (2016)

    Google Scholar 

  421. M. Safdar, J. Janis, S. Sanchez: Microfluidic fuel cells for energy generation, Lab Chip 16, 2754–2758 (2016)

    Google Scholar 

  422. H. Lee, S. Choi: A micro-sized bio-solar cell for self-sustaining power generation, Lab Chip 15, 391–398 (2015)

    Google Scholar 

  423. L. Li, G. Wang, R. Chen, X. Zhu, H. Wang, Q. Liao, Y. Yu: Optofluidics based micro-photocatalytic fuel cell for efficient wastewater treatment and electricity generation, Lab Chip 14, 3368–3375 (2014)

    Google Scholar 

  424. J.P. Esquivel, M. Castellarnau, T. Senn, B. Lochel, J. Samitier, N. Sabate: Fuel cell-powered microfluidic platform for lab-on-a-chip applications, Lab Chip 12, 74–79 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Aryasomayajula, A., Bayat, P., Rezai, P., Selvaganapathy, P.R. (2017). Microfluidic Devices and Their Applications. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics