Skip to main content
Log in

Computational Studies of Substituted Phenylboronic Acids in Common Electrolyte Solvents

  • Research Article - Special Issue - Functional Materials - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Boronic acids and boronates are known as redox shuttles and film-forming additives. For example, 3,5-bis(trifluoromethyl)phenylboronic acid is reduced at a higher potential than that of PC-solvated \(\hbox {Li}^{+}\) ion because of its lower LUMO energy level. Theoretical (molecular modelling) studies of the HOMO and LUMO energies of several phenylboronic acids and -boronates showed that the LUMO energies of all boronates were significantly lower than the LUMO energies of the commonly used carbonate electrolytes, both in vacuo and in solution, making them good candidates as electrolyte additives. The preferred conformation in vacuo and in solution of the boronate ester groups was ‘in–out’, with dihedral angles between the aromatic ring and boronate group varying between \(29.5{^{\circ }}\) and \(33.6{^{\circ }}\). In contrast, the preferred conformations of the phenylboronic acids were found to be always coplanar and ‘out–out’, with dihedral angles close to \(0{^{\circ }}\). We speculated that back-bonding and intermolecular hydrogen bonding played a role. In this study, therefore, we investigated the role of intermolecular hydrogen bonding and solvation in this phenomenon, using HF and DFT methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall, D.G. (ed.): Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. Wiley, Weinheim (2005)

    Google Scholar 

  2. Wang, B.; Qu, Q.T.; Xia, Q.; Wu, Y.P.; Li, X.; Gan, C.L.; van Ree, T.: Effects of 3,5-bis(trifluoromethyl)benzeneboronic acid as an additive on electrochemical performance of propylene carbonate-based electrolytes for lithium ion batteries. Electrochim. Acta 54, 816–820 (2008)

    Article  Google Scholar 

  3. Bebeda, A.W.; van Ree, T.: Conformational preferences and electrochemical performance of ethyleneoxy phenylboronate electrolyte additives. Arab. J. Sci. Eng. 40, 2841–2851 (2015)

    Article  Google Scholar 

  4. Pedireddi, V.R.; SeethaLekshmi, N.: Boronic acids in the design and synthesis of supramolecular assemblies. Tetrahedron Lett. 45, 1903–1906 (2004)

    Article  Google Scholar 

  5. Rodriguez-Cuamatzi, P.; Arillo-Flores, O.I.; Bernal-Uruchurtu, M.I.; Höpfl, H.: Theoretical and experimental evaluation of HOMO- and heterodimeric hydrogen-bonded motifs containing boronic acids, carboxylic acids, and carboxylate anions: Application for the generation of highly stable hydrogen-bonded supramolecular systems. Cryst. Growth Des. 5, 167–175 (2005)

    Article  Google Scholar 

  6. Fournier, J.-H.; Maris, T.; Wuest, J.D.; Guo, W.; Galoppini, E.: Molecular tectonics. Use of the hydrogen bonding of boronic acids to direct supramolecular construction. J. Am. Chem. Soc. 125, 1002–1006 (2003)

    Article  Google Scholar 

  7. Rodríguez-Cuamatzi, P.; Vargas-Díaz, G.; Höpfl, H.: Modification of 2D water that contains hexameric units in chair and boat conformations: a contribution to the structural elucidation of bulk water. Angew. Chem. Int. Ed. 43, 3041–3044 (2004)

    Article  Google Scholar 

  8. Sporzyński, A.; Miśkiewicz, A.; Gierczyk, B.; Pankiewicz, R.; Schroeder, G.; Brzezinski, B.: Polyoxaalkyl esters of phenylboronic acids as new podands. J. Mol. Struct. 791, 111–116 (2006)

    Article  Google Scholar 

  9. Pasgreta, E.; Puchta, R.; Zahl, A.; van Eldik, R.: Ligand exchange processes on solvated lithium cations Part V: complexation by cryptands in acetone as solvent. Eur. J. Inorg. Chem. 19, 3067–3076 (2007)

    Article  Google Scholar 

  10. Danil de Namor, A.F.; Ng, J.C.Y.; Llosa Tanco, M.A.; Salomon, M.: Thermodynamics of lithium–crown ether (12-crown-4 and 1-Benzyl-1-aza-12-crown-4) interactions in acetonitrile and propylene carbonate. The anion effect on the coordination process. J. Phys. Chem. 100, 14485–14491 (1996)

    Article  Google Scholar 

  11. Gao, M.; Wang, Y.; Yi, Q.; Su, Y.; Sun, P.; Wang, X.; Zhao, J.; Zou, G.: A novel solid-state electrolyte based on a crown ether lithium salt complex. J. Mater. Chem. A 3, 20541–20546 (2015)

    Article  Google Scholar 

  12. Nishiyabu, R.; Kubo, Y.; James, T.D.; Fossey, J.S.: Boronic acid building blocks: tools for self-assembly. Chem. Commun. 47(4), 1124–1150 (2011)

    Article  Google Scholar 

  13. Cyrański, M.K.; Jezierska, A.; Klimentowska, P.; Panek, J.J.; Sporzyński, A.: Impact of intermolecular hydrogen bond on structural properties of phenylboronic acid: quantum chemical and X-ray study. J. Phys. Org. Chem. 21, 472–482 (2008)

    Article  Google Scholar 

  14. Sporzyński, A.: Hydrogen bonds in boronic acids and their complexes. Pol. J. Chem. 81, 757–766 (2007)

    Google Scholar 

  15. Allen, F.H.; Davies, J.E.; Galloy, J.J.; Johnson, O.; Kennard, O.; McRae, E.M.; Mitchell, G.F.; Smith, J.M.; Watson, D.G.: The development of versions 3 and 4 of the Cambridge structural database system. J. Chem. Inf. Comput. Sci. 31, 187–204 (1991)

    Article  Google Scholar 

  16. Lee, C.; Yang, W.; Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1998)

    Article  Google Scholar 

  17. Becke, A.D.: A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993)

    Article  Google Scholar 

  18. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  Google Scholar 

  19. Peverati, R.; Truhlar, D.G.: A global hybrid generalized gradient approximation to the exchange-correlation functional that satisfies the second-order density-gradient constraint and has broad applicability in chemistry. J. Chem. Phys. 135, 191102 (2011)

    Article  Google Scholar 

  20. Kabanda, M.M.; Mammino, L.: The conformational preferences of acylphloroglucinols: a promising class of biologically active compounds. Int. J. Quantum Chem. 112, 3691–3702 (2012)

    Article  Google Scholar 

  21. Tomasi, J.; Persico, M.: Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev. 94, 2027–2094 (1994)

    Article  Google Scholar 

  22. Tomasi, J.; Mennucci, B.; Cammi, R.: Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3094 (2005)

    Article  Google Scholar 

  23. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A.: Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT (2004)

  24. Mennucci, B.; Tomasi, J.: Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys. 106, 5151–5158 (1997)

  25. Mennucci, B.; Cancès, E.; Tomasi, J.: Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method? Theoretical bases, computational implementation, and numerical applications. J. Phys. Chem. B 101, 10506–10517 (1997)

    Article  Google Scholar 

  26. Cancès, E.; Mennucci, B.; Tomasi, J.: A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 107, 3032–3041 (1997)

    Article  Google Scholar 

  27. Barone, V.; Cossi, M.; Tomasi, J.: Geometry optimization of molecular structures in solution by the polarizable continuum model. J. Comput. Chem. 19, 404–417 (1998)

    Article  Google Scholar 

  28. Pascual-Ahuir, J.L.; Silla, E.: GEPOL: an improved description of molecular surfaces. I. Building the spherical surface set. J. Comput. Chem. 11, 1047–1060 (1990)

    Article  Google Scholar 

  29. Silla, E.; Villar, F.; Nilsson, O.; Pascual-Ahuir, J.L.; Tapia, O.: Molecular volumes and surfaces of biomacromolecules via GEPOL: a fast and efficient algorithm. J. Mol. Graph. 8, 168–172 (1990)

    Article  Google Scholar 

  30. Silla, E.; Tunon, I.; Pascual-Ahuir, J.L.: GEPOL: an improved description of molecular surfaces. II Computing the molecular area and volume. Comput. Chem. 12, 1077–1088 (1991)

  31. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, S.: A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    Article  Google Scholar 

  32. Zhao, Y.; Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215 (2008)

  33. Peverati, R.; Truhlar, D.G.: Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos. Trans. R. Soc. A 372, 20120476 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dennington, R.D.; Keith, T.A.; Millan, J.; Neilsen, A.B.; Holder, A.J.; Hiscocks, J.: GaussView 4.1. Semichem Inc., Shawnee Mission (2007)

  35. Stowasser, R.; Hoffmann, R.: What do the Kohn–Sham orbitals and eigenvalues mean? J. Am. Chem. Soc. 121, 3414–3420 (1999)

    Article  Google Scholar 

  36. Zhang, G.; Musgrave, C.B.: Comparison of DFT methods for molecular orbital eigenvalue calculations. J. Phys. Chem. A 111, 1554–1561 (2007)

    Article  Google Scholar 

  37. Rogowska, P.; Cyrański, M.K.; Sporzyński, A.; Ciesielski, A.: Evidence for strong heterodimeric interactions of phenylboronic acids with aminoacids. Tetrahedron Lett. 47, 1389–1393 (2006)

    Article  Google Scholar 

  38. Boys, S.F.; Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teunis van Ree.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaite, I.D.I., van Ree, T. Computational Studies of Substituted Phenylboronic Acids in Common Electrolyte Solvents. Arab J Sci Eng 42, 4227–4238 (2017). https://doi.org/10.1007/s13369-017-2612-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2612-1

Keywords

Navigation