Skip to main content

Advertisement

Log in

Role of Porosity on Energy Transport with Equal Rock-Fluid Temperatures During Thermal EOR Process

  • Research Article - Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Enhanced oil recovery (EOR) techniques have garnered the attention of the oil industry because they promise to extend the life of hydrocarbon reservoirs that have passed their peak of productivity. The heat and momentum transfer equations are the main governing equations for the thermal EOR processes. Thermal EOR, in particular, helps improve the extraction yield by injecting heat into the reservoir and altering the physical properties of porous rocks (e.g., permeability) and fluids therein (e.g., viscosity). Simulation modelling can help improve our understanding of the underlying thermal processes, but its prediction accuracy largely depends on the use of the correct energy balance equation as the governing equation. This study considered two established energy balance equations: the first without porosity (case I); and the second with porosity in terms of thermal energy transported by heat conduction (case II). We numerically solved the model equations and compare the porosity anomalies in both cases. Our results show that the inclusion of porosity in the heat conduction term of the energy balance equation has a significant impact on the temperature profile of the reservoir and dimensionless numbers in heat transfer because it increases the fluid storage capacity of the porous medium. Therefore, one should carefully select the appropriate energy balance equation for the defined porous medium. It is also established that Hossain–Abu-Khamsin numbers \(N_{HA3} \) and \(N_{HA4} \) become important when porosity is considered. Porosity plays a significant role in temperature distribution. In addition, the study showed that the thermal conductivity of fluids has more influence on the temperature profile than that of solid rocks. The findings have important implications for improving the yield and efficiency of thermal EOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Cross sectional area of rock perpendicular to the flow of flowing fluid (m\(^{2}\))

\(c_\mathrm{f} \) :

Total fluid compressibility of the system (1/Pa)

\(c_\mathrm{s} \) :

Formation rock compressibility of the system (1/Pa)

\(c_\mathrm{t} \) :

Total compressibility of the system (1/Pa)

\(c_\mathrm{pf} \) :

Total specific heat capacity of the formation fluids (kJ/kg K)

\(c_\mathrm{pg} \) :

Specific heat capacity of gas (kJ/kg K)

\(c_\mathrm{po} \) :

Specific heat capacity of oil (kJ/kg K)

\(c_\mathrm{ps} \) :

Specific heat capacity of solid rock matrix (kJ/kg K)

\(c_\mathrm{pw} \) :

Specific heat capacity of water (kJ/kg K)

\(h_\mathrm{c} \) :

Convection heat transfer coefficient (kJ/h m\(^{2}\) K)

k :

Reservoir permeability (m\(^{2}\))

\(k_\mathrm{e} \) :

Overall effective thermal conductivity of fluid saturated porous media (kJ/h m K)

\(k_\mathrm{eff} \) :

Local effective thermal conductivity of fluid saturated porous media (kJ/h m K)

\(k_\mathrm{f} \) :

Absolute thermal conductivity of fluid within the porous rock matrix (kJ/h m K)

\(k_\mathrm{g} \) :

Thermal conductivity of gas (kJ/h m K)

\(k_\mathrm{o} \) :

Thermal conductivity of oil (kJ/h m K)

\(k_\mathrm{s} \) :

Absolute thermal conductivity of solid rock matrix (kJ/h m K)

\(k_\mathrm{w} \) :

Thermal conductivity of water (kJ/h m K)

L :

Distance between production and injection well along x direction (m)

\(L_\mathrm{c} \) :

Characteristic length related to pore-throat diameter (m)

\(L^{*}\) :

Dimensionless length of the reservoir

M :

Average system heat capacity (kJ/m\(^{3}\) K)

\(N_\mathrm{PeL}\) :

\(L_\mathrm{c} \rho _\mathrm{f} c_\mathrm{pf} u_x /k_\mathrm{e}=\) local Peclet number (dimensionless)

p :

Pressure of the system (Pa)

\(p_\mathrm{i} \) :

Initial pressure of the system (Pa)

\(p_0 \) :

A reference pressure of the system (Pa)

\(q_\mathrm{i} \) :

Au = initial volume production rate (m\(^{3}\)/s)

\(q_x \) :

Fluid mass flow rate per unit area in x-direction (kg/m\(^{2}\) s)

\(q^{*}\) :

Dimensionless volume production rate

\(q_\mathrm{inj} \) :

Injection volume flow rate of steam = Au (m\(^{3}\)/s)

\(q_\mathrm{prod} \) :

Production volume flow rate of oil = Au (m\(^{3}\)/s)

\(r_\mathrm{pt} \) :

Pore-throat radius (microns)

\(S_\mathrm{g} \) :

Gas saturation (volume fraction)

\(S_\mathrm{o} \) :

Oil saturation (volume fraction)

\(S_\mathrm{w} \) :

Water saturation (volume fraction)

\(S_\mathrm{wi} \) :

Initial water saturation (volume fraction)

t :

Time (s)

T :

Temperature (K)

\(T_\mathrm{f} \) :

Temperature of injected fluid (K)

\(T_\mathrm{s} \) :

Average temperature of solid rock matrix (K)

\(T^{*}\) :

Dimensionless temperature

\(T_\mathrm{HW} \) :

Temperature of injected fluid (K)

\(T_\mathrm{HW}^*\) :

Dimensionless temperature of injected fluid

\(T_\mathrm{i} \) :

Initial reservoir temperature (K)

\(t^{*}\) :

Dimensionless time

\(u_x \) :

Fluid velocity in porous media in the direction of x axis (m/s)

\(u^{*}\) :

Dimensionless velocity

x :

Flow dimension at any point along x-direction (m)

\(x^{*}\) :

Dimensionless distance

\(\alpha \) :

Fractional order of differentiation, dimensionless

\(\alpha _\mathrm{H}\) :

\(k/\phi \mu c_\mathrm{t} =\) hydraulic diffusivity of the fluid-saturated porous medium (m\(^{2}\)/s)

\(\Delta T\) :

Temperature difference (K)

\(\upsilon \) :

\(\mu /\rho _\mathrm{f} =\) kinematic viscosity (ratio of absolute or dynamic viscosity to density) (m\(^{2}\)/s)

\(\mu \) :

Fluid dynamic viscosity (Pa s)

\(\rho \) :

Fluid density (kg/m\(^{3}\))

\(\Delta \rho \) :

\(\rho _\mathrm{w} -\rho _\mathrm{o} =\) density difference of fluids (water and oil) (kg/m\(^{3}\))

\(\phi \) :

Porosity of the rock matrix, volume fraction

\(\rho _\mathrm{f} \) :

Weighted-average density of the formation fluids (kg/m\(^{3}\))

\(\rho _\mathrm{g} \) :

Density of gas (kg/m\(^{3}\))

\(\rho _\mathrm{o} \) :

Density of oil (kg/m\(^{3}\))

\(\rho _\mathrm{s} \) :

Density of solid rock matrix (kg/m\(^{3}\))

\(\rho _\mathrm{w} \) :

Density of water (kg/m\(^{3}\))

API:

American petroleum institute

rb:

Reservoir barrels

stb:

Standard barrels

scf:

Standard cubic feet

References

  1. Iaffaldano, G.; Caputo, M.; Martino, S.: Experimental and theoretical memory diffusion of water in sand. Hydrol. Earth Syst. Sci. 10(1), 93–100 (2006)

    Article  Google Scholar 

  2. Hossain, M.E.; Mousavizadegan, S.H.; Islam, M.R.: The effects of thermal alterations on formation permeability and porosity. Pet. Sci. Technol. 26(10–11), 1282–1302 (2008a)

    Article  Google Scholar 

  3. Hossain, M.E.; Mousavizadegan, S.H.; Islam, M.R.: Rock and fluid temperature changes during thermal operations in EOR processes. J. Nat. Sci. Sustain. Technol. 2(3), 347–378 (2008b)

    Google Scholar 

  4. Hossain, M.E.; Mousavizadegan, S.H.; Islam, M.R.: Effects of memory on the complex rock-fluid properties of a reservoir stress-strain model. Pet. Sci. Technol. 27(10), 1109–1123 (2009a)

    Article  Google Scholar 

  5. Hossain, M.E.; Mousavizadegan, S.H.; Islam, M.R.: Variation of rock and fluid temperature during thermal operations in porous media. Pet. Sci. Technol. 27, 597–611 (2009b)

    Article  Google Scholar 

  6. Cloot, A.; Botha, J.F.: A generalized groundwater flow equation using the concept of non-integer order derivatives. Water SA 32(1), 1–7 (2006)

    Google Scholar 

  7. Di Giuseppe, E.; Moroni, M.; Caputo, M.: Flux in porous media with memory: models and experiments. Transp. Porous Media 83(3), 479–500 (2010)

    Article  Google Scholar 

  8. Spillette, A.G.: Heat transfer during hot fluid injection into an oil reservoir. J. Can. Pet. Technol. 4, 213–218 (1965)

    Article  Google Scholar 

  9. van Poollen, H.K.; Associates Inc.: Fundamentals of Enhanced Oil Recovery, vol. 74101, pp. 155. PennWell Publishing Company, Tulsa (1980)

  10. Chan, Y.T.; Banerjee, S.: Analysis of transient three-dimensional natural convection in porous media. J. Heat Transf. 103, 242–248 (1981)

    Article  Google Scholar 

  11. Lake, L.W.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989). 07632

    Google Scholar 

  12. Satman, A.; Zolotukhin, A.B.; Soliman, M.Y.: Application of the time-dependent overall heat-transfer coefficient concept to heat-transfer problems in porous media. Soc. Pet. Eng. J. 24, 107–112 (1984)

    Article  Google Scholar 

  13. Kaviany, M.: Principles of Heat Transfer. Wiley, New York (2002)

    MATH  Google Scholar 

  14. Dawkrajai, P.; Lake, L.W.; Yoshioka, K.; Zhu, D.; Hill, A.D.: Detection of water or gas entries in horizontal wells from temperature profiles. In: SPE—100050, Presented at SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, 22–26 Apr (2006)

  15. Yoshioka, K.; Zhu., D.; Hill, A.D.; Dawkrajai, P.: Lake, L.W.: Detection of water or gas entries in horizontal wells from temperature profiles. In: SPE—100209, Presented at SPE Europe/EAGE Annual Conference and Exhibition, Vienna, Austria, 12–15 June (2006)

  16. Yoshioka, K.; Zhu, D.; Hill, A.D.; Dawkrajai, P.; Lake, L.W.: Prediction of temperature changes caused by water or gas entry into a horizontal well. In: SPE–100209, SPE Production & Operations, pp. 425–433, Nov (2007)

  17. Yoshioka, K.; Zhu, D.; Hill, A.D.; Lake, L.W.: A new inversion method to interpret flow profiles from distributed temperature and pressure measurements in horizontal wells. In: SPE—109749, SPE Production & Operations, pp. 510–521, Nov (2009)

  18. Weibo, S.; Ehlig-Economides, C.; Zhu, D.; Hill, A.D.: Determining multilayer formation properties from transient temperature and pressure measurements in commingled gas wells. In: SPE 131150, Presented at the CPS/SPE International Oil & Gas Conference and Exhibition, Beijing, 8–10 June (2010)

  19. Cengel, Y.A.; Ghajar, A.J.: Heat and Mass Transfer: Fundamentals and Applications, 4th edn. McGraw-Hill, New York (2011)

  20. Wang, Z.; Horne, R.N.: Analyzing wellbore temperature distributions using nonisothermal multiphase flow simulation. In: SPE 144577, Presented at the SPE Western North American Regional Meeting, Anchorage, Alaska, 7–11 May (2011)

  21. Hossain, M.E.; Abu-Khamsin, S.A.: Utilization of memory concept to develop heat transfer dimensionless numbers for porous media undergoing thermal flooding with equal rock-fluid temperatures. J. Porous Media 15(10), 937–953 (2012a)

    Article  Google Scholar 

  22. Hossain, M.E.; Abu-Khamsin, S.A.: Development of dimensionless numbers for heat transfer in porous media using memory concept. J. Porous Media 15(10), 957–973 (2012b)

    Article  Google Scholar 

  23. Hossain, M.E.; Mousavizadegan, S.H.; Islam, M.R.: Rock and fluid temperature changes during thermal operations in EOR processes. J. Nat. Sci. Sustain. Technol. 2(3), 347–378 (2008)

    Google Scholar 

  24. Marx, J.W.; Langenheim, R.H.: Reservoir heating by hot fluid injection. Trans. Soc. Pet. Eng. AIME 216, 312–315 (1959)

  25. Simacek, P.; Advani, S.G.: An analytic solution for the temperature distribution in flow through porous media in narrow gaps: I—linear injection. Heat Mass Transf. 38, 25–33 (2001)

    Article  Google Scholar 

  26. Hossain, M.E.; Abu-Khamsin, S.A.; Al-Helali, A.: A mathematical model for the steam flood with equal rock and fluid temperatures. J. Porous Media 18(7), 731–744 (2015)

  27. Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  28. Lee, D.Y.; Vafai, K.: Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media. Int. J. Heat Mass Trans. 42, 423–435 (1999)

    Article  MATH  Google Scholar 

  29. Alazmi, B.; Vafai, K.: Analysis of variants within the porous media transport models. J. Heat Transf. 122, 303–326 (2000)

    Article  Google Scholar 

  30. Nield, D.A.; Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    MATH  Google Scholar 

  31. Hossain, M.E.: Scaling of heat transfer dimensionless numbers developed by memory concept for porous media application. In: Submitted to ASME Journal of Energy Resources Technology, Manuscript Number: JERT-15-1041, 30 Jan 2015, under review (2015)

  32. Nield, D.A.; Bejan, A.: Convection in Porous Media, 2nd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  33. Vafai, K.: Handbook of Porous Media, pp. 1–52. Marcel Dekker, Inc., New York (2000)

    MATH  Google Scholar 

  34. Pop, I.; Ingham, D.B.: Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media. Pergamon Press, Oxford (2001)

    Google Scholar 

  35. Ingham, D.B.; Pop, I.: Transport Phenomena in Porous Media, vol. 2. Pergamon Press, Oxford (2002)

    MATH  Google Scholar 

  36. Vafai, K.: Handbook of Porous Media, 2nd edn. Taylor & Francis, Boca Raton (2005)

    MATH  Google Scholar 

  37. Tong, F.; Jing, L.; Zimmerman, R.W.: An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow. Int. J. Rock Mech. Min. Sci. 46, 1358–1369 (2009)

    Article  Google Scholar 

  38. Kolodzie, S. Jr.: Analysis of pore throat size and use of the Waxman–Smits equation to determine OOIP in spindle field. In: Colorado Society of Petroleum Engineers, 55th Annual Fall Technical Conference Paper 9382, 10p (1980)

  39. Pittman, E.D.: Relationship of porosity and permeability to various parameters derived from mercury injection–capillary pressure curve for sandstone. AAPG Bull. 76, 191–198 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enamul Hossain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.E. Role of Porosity on Energy Transport with Equal Rock-Fluid Temperatures During Thermal EOR Process. Arab J Sci Eng 42, 1621–1631 (2017). https://doi.org/10.1007/s13369-016-2343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2343-8

Keywords

Navigation